Nothing
#' Consistent API for 'emmeans' and 'marginaleffects'
#'
#' @description
#' These functions are convenient wrappers around the **emmeans** and the
#' **marginaleffects** packages. They are mostly available for developers who want
#' to leverage a unified API for getting model-based estimates, and regular users
#' should use the `estimate_*` set of functions.
#'
#' The `get_emmeans()`, `get_emcontrasts()` and `get_emtrends()` functions are
#' wrappers around `emmeans::emmeans()` and `emmeans::emtrends()`.
#'
#' @inheritParams estimate_means
#' @inheritParams estimate_slopes
#' @inheritParams estimate_contrasts
#'
#' @examplesIf require("emmeans", quietly = TRUE)
#' model <- lm(Sepal.Length ~ Species + Petal.Width, data = iris)
#'
#' # By default, 'by' is set to "Species"
#' get_emmeans(model)
#'
#' \dontrun{
#' # Overall mean (close to 'mean(iris$Sepal.Length)')
#' get_emmeans(model, by = NULL)
#'
#' # One can estimate marginal means at several values of a 'modulate' variable
#' get_emmeans(model, by = "Petal.Width", length = 3)
#'
#' # Interactions
#' model <- lm(Sepal.Width ~ Species * Petal.Length, data = iris)
#'
#' get_emmeans(model)
#' get_emmeans(model, by = c("Species", "Petal.Length"), length = 2)
#' get_emmeans(model, by = c("Species", "Petal.Length = c(1, 3, 5)"), length = 2)
#' }
#' @export
get_emmeans <- function(model,
by = "auto",
predict = NULL,
transform = NULL,
keep_iterations = FALSE,
verbose = TRUE,
...) {
# check if available
insight::check_if_installed("emmeans")
## TODO: remove deprecation warning later
if (!is.null(transform)) {
insight::format_warning("Argument `transform` is deprecated. Please use `predict` instead.")
predict <- transform
}
# Guess arguments
my_args <- .guess_emmeans_arguments(model, by, verbose, ...)
# find default response-type
predict <- .get_emmeans_type_argument(model, predict, type = "means", ...)
# setup arguments
fun_args <- list(
model,
specs = my_args$emmeans_specs,
at = my_args$emmeans_at
)
# handle distributional parameters
if (predict %in% .brms_aux_elements() && inherits(model, "brmsfit")) {
fun_args$dpar <- predict
} else {
fun_args$type <- predict
}
# add dots
dots <- list(...)
fun_args <- insight::compact_list(c(fun_args, dots))
# Run emmeans
estimated <- suppressWarnings(do.call(emmeans::emmeans, fun_args))
# Special behaviour for transformations #138 (see below)
if ("retransform" %in% names(my_args) && length(my_args$retransform) > 0) {
for (var in names(my_args$retransform)) {
estimated@levels[[var]] <- levels(my_args$retransform[[var]])
estimated@grid[[var]] <- my_args$retransform[[var]]
}
}
# for Bayesian model, keep iterations
if (insight::model_info(model)$is_bayesian) {
attr(estimated, "posterior_draws") <- insight::get_parameters(estimated)
} else {
keep_iterations <- FALSE
}
attr(estimated, "at") <- my_args$by
attr(estimated, "by") <- my_args$by
attr(estimated, "predict") <- predict
attr(estimated, "focal_terms") <- my_args$emmeans_specs
attr(estimated, "transform") <- TRUE
attr(estimated, "keep_iterations") <- keep_iterations
estimated
}
# =========================================================================
# HELPERS (guess arguments) -----------------------------------------------
# =========================================================================
#' @keywords internal
.guess_emmeans_arguments <- function(model,
by = NULL,
verbose = TRUE,
...) {
# Gather info
model_data <- insight::get_data(model, verbose = FALSE)
predictors <- intersect(
colnames(model_data),
insight::find_predictors(model, effects = "fixed", flatten = TRUE, ...)
)
# Guess arguments
if (!is.null(by) && length(by) == 1 && by == "auto") {
by <- predictors[!sapply(model_data[predictors], is.numeric)]
if (!length(by) || all(is.na(by))) {
insight::format_error("Model contains no categorical factor. Please specify `by`.")
}
if (verbose) {
insight::format_alert(paste0("We selected `by = c(", toString(paste0('"', by, '"')), ")`."))
}
}
my_args <- list(by = by)
.process_emmeans_arguments(model, args = my_args, data = model_data, ...)
}
## TODO: validate predict argument to make sure it only has valid options
.get_emmeans_type_argument <- function(model, predict, type = "means", ...) {
if (is.null(predict)) {
predict <- switch(type,
means = "response",
contrasts = "response",
"none"
)
} else if (predict == "link") {
predict <- "none"
}
predict
}
# Table formatting emmeans ----------------------------------------------------
.format_emmeans_means <- function(x, model, ci = 0.95, verbose = TRUE, ...) {
predict <- attributes(x)$predict
# Summarize and clean
if (insight::model_info(model)$is_bayesian) {
means <- parameters::parameters(x, ci = ci, ...)
means <- .clean_names_bayesian(means, model, predict, type = "mean")
em_grid <- as.data.frame(x@grid)
em_grid[[".wgt."]] <- NULL # Drop the weight column
colums_to_add <- setdiff(colnames(em_grid), colnames(means))
if (length(colums_to_add)) {
means <- cbind(em_grid[colums_to_add], means)
}
} else {
means <- as.data.frame(stats::confint(x, level = ci))
means$df <- NULL
means <- .clean_names_frequentist(means)
}
# Remove the "1 - overall" column that can appear in cases like at = NULL
means <- means[names(means) != "1"]
# Restore factor levels
means <- datawizard::data_restoretype(means, insight::get_data(model, verbose = FALSE))
info <- attributes(x)
attr(means, "at") <- info$by
attr(means, "by") <- info$by
.add_posterior_draws_emmeans(info, means)
}
# adds posterior draws to output for emmeans objects
.add_posterior_draws_emmeans <- function(info, estimated) {
# add posterior draws?
if (!is.null(info$posterior_draws)) {
# how many?
keep_iterations <- info$keep_iterations
# check if user wants to keep any posterior draws
if (isTRUE(keep_iterations) || is.numeric(keep_iterations)) {
# reshape draws
posterior_draws <- datawizard::data_transpose(info$posterior_draws)
# keep all iterations when `TRUE`
if (isTRUE(keep_iterations)) {
keep_iterations <- ncol(posterior_draws)
}
colnames(posterior_draws) <- paste0("iter_", seq_len(ncol(posterior_draws)))
estimated <- cbind(estimated, posterior_draws[, 1:keep_iterations, drop = FALSE])
}
}
# remove from attributes
attr(estimated, "posterior_draws") <- NULL
estimated
}
# Bring arguments in shape for emmeans ----------------------------------------
#' @keywords internal
.process_emmeans_arguments <- function(model, args, data, ...) {
# Create the data_matrix
# ---------------------------
# data <- insight::get_data(model, verbose = FALSE)
predictors <- insight::find_predictors(
model,
effects = "fixed",
flatten = TRUE,
...
)
data <- data[intersect(predictors, colnames(data))]
# Deal with 'at'
if (is.null(args$by)) {
args$data_matrix <- NULL
} else if (is.data.frame(args$by)) {
args$data_matrix <- args$by
args$by <- names(args$by)
} else if (is.list(args$by)) {
args$data_matrix <- expand.grid(args$by)
args$by <- names(args$data_matrix)
} else if (inherits(args$by, "formula")) {
args$data_matrix <- stats::model.frame(args$by, data = data)
args$by <- names(args$data_matrix)
} else {
if (!is.null(args$by) && all(args$by == "all")) {
target <- intersect(predictors, colnames(data))
} else {
target <- args$by
}
datagrid <- insight::get_datagrid(data, by = target, ...)
args$by <- attributes(datagrid)$at_specs$varname
args$data_matrix <- as.data.frame(datagrid[args$by])
if (length(args$by) == 0) args$by <- NULL # Post-clean
}
# Deal with 'contrast'
if (!is.null(args$contrast)) {
contrast <- insight::get_datagrid(data, by = args$contrast, ...)
args$contrast <- attributes(contrast)$at_specs$varname
contrast <- as.data.frame(contrast[args$contrast])
if (is.null(args$data_matrix)) {
args$data_matrix <- contrast
} else {
contrast <- contrast[!names(contrast) %in% names(args$data_matrix)]
if (ncol(contrast) > 0) args$data_matrix <- merge(args$data_matrix, contrast)
}
}
# Get 'specs' and 'at'
# --------------------
if (is.null(args$data_matrix)) {
args$emmeans_specs <- ~1
args$emmeans_at <- NULL
} else {
args$emmeans_specs <- names(args$data_matrix)
args$emmeans_at <- sapply(as.list(args$data_matrix), unique, simplify = FALSE)
}
# Special behaviour for transformations #138
# It's annoying and an ugly fix, not sure how to address
if (!is.null(args$emmeans_at)) {
args$retransform <- list()
model_terms <- insight::find_terms(model)$conditional
for (var_at in names(args$emmeans_at)) {
term <- model_terms[grepl(var_at, model_terms, fixed = TRUE)]
if (any(grepl(paste0("as.factor(", var_at, ")"), term, fixed = TRUE)) ||
any(grepl(paste0("as.character(", var_at, ")"), term, fixed = TRUE))) {
args$retransform[[var_at]] <- args$emmeans_at[[var_at]]
args$emmeans_at[[var_at]] <- as.numeric(as.character(args$emmeans_at[[var_at]]))
}
}
}
args
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.