Nothing
#' @rdname get_emmeans
#'
#' @examplesIf insight::check_if_installed("marginaleffects", quietly = TRUE)
#' model <- lm(Sepal.Width ~ Species * Petal.Length, data = iris)
#'
#' get_marginaltrends(model, trend = "Petal.Length", by = "Species")
#' get_marginaltrends(model, trend = "Petal.Length", by = "Petal.Length")
#' get_marginaltrends(model, trend = "Petal.Length", by = c("Species", "Petal.Length"))
#' @export
get_marginaltrends <- function(model,
trend = NULL,
by = NULL,
ci = 0.95,
p_adjust = "none",
transform = NULL,
keep_iterations = FALSE,
verbose = TRUE,
...) {
# check if available
insight::check_if_installed("marginaleffects")
dots <- list(...)
# model details
model_info <- insight::model_info(model, verbose = FALSE)
# Guess arguments
trend <- .guess_marginaltrends_arguments(model, trend, verbose, ...)
# First step: create a data grid --------------------------------------------
# ---------------------------------------------------------------------------
# data grid only when we have by predictors
if (is.null(by)) {
datagrid <- datagrid_info <- NULL
} else {
dg_args <- list(
model,
by = by,
factors = "all",
include_random = TRUE,
verbose = FALSE
)
# add user-arguments from "...", but remove those arguments that are already set
dots[c("by", "factors", "include_random", "verbose")] <- NULL
dg_args <- insight::compact_list(c(dg_args, dots))
# Get corresponding datagrid (and deal with particular ats)
datagrid <- do.call(insight::get_datagrid, dg_args)
datagrid_info <- attributes(datagrid)
}
# Second step: prepare arguments for marginaleffects ------------------------
# ---------------------------------------------------------------------------
# sanity check
if (!is.null(datagrid)) {
datagrid <- as.data.frame(datagrid)
}
# remove user-arguments from "..." that will be used when calling marginaleffects
dots[c("by", "conf_level", "digits")] <- NULL
# handle weights - argument is named "wts" in marginal effects
if (!is.null(dots$weights)) {
dots$wts <- dots$weights
dots$weights <- NULL
}
# setup arguments again
fun_args <- insight::compact_list(c(
list(
model,
variables = trend,
by = datagrid_info$at_specs$varname,
newdata = datagrid,
conf_level = ci
),
dots
))
# Third step: compute marginal slopes ---------------------------------------
# ---------------------------------------------------------------------------
# Compute stuff
estimated <- suppressWarnings(do.call(marginaleffects::avg_slopes, fun_args))
# Fourth step: back-transform response --------------------------------------
# ---------------------------------------------------------------------------
# transform reponse?
if (isTRUE(transform)) {
trans_fun <- insight::get_transformation(model, verbose = FALSE)$inverse
} else {
trans_fun <- transform
}
# if we have back-transformation, do that, but remove standard errors
# these are no longer correct
if (!is.null(trans_fun)) {
estimated$estimate <- trans_fun(estimated$estimate)
estimated$conf.low <- trans_fun(estimated$conf.low)
estimated$conf.high <- trans_fun(estimated$conf.high)
estimated$std.error <- NULL
}
# Last step: Save information in attributes --------------------------------
# ---------------------------------------------------------------------------
estimated <- .add_attributes(
estimated,
model_info = model_info,
info = c(
datagrid_info,
list(
trend = trend,
datagrid = datagrid,
coef_name = "Slope",
p_adjust = p_adjust,
ci = ci,
transform = !is.null(transform),
keep_iterations = keep_iterations
)
)
)
class(estimated) <- unique(c("marginaleffects_slopes", class(estimated)))
# adjust p-values
if (!model_info$is_bayesian) {
estimated <- .p_adjust(model, estimated, p_adjust, verbose, ...)
}
estimated
}
# =========================================================================
# HELPERS (guess arguments) -----------------------------------------------
# =========================================================================
#' @keywords internal
.guess_marginaltrends_arguments <- function(model,
trend = NULL,
verbose = TRUE,
...) {
# Gather info
model_data <- insight::get_data(model, verbose = FALSE)
predictors <- intersect(
colnames(model_data),
insight::find_predictors(model, effects = "fixed", flatten = TRUE, ...)
)
# Guess arguments
if (is.null(trend)) {
trend <- predictors[sapply(model_data[predictors], is.numeric)][1]
if (!length(trend) || is.na(trend)) {
insight::format_error("Model contains no numeric predictor. Please specify `trend`.")
}
if (verbose) {
insight::format_alert(paste0("No numeric variable was specified for slope estimation. Selecting `trend = \"", trend, "\"`.")) # nolint
}
}
if (length(trend) > 1) {
if (verbose) {
insight::format_alert(paste0(
"More than one numeric variable was selected for slope estimation. Keeping only `", trend[1], "`. ", # nolint
"If you want to estimate the slope of `", trend[1], "` at different values of `", trend[2], "`, use `by=\"", trend[2], "\"` instead." # nolint
))
}
trend <- trend[1]
}
trend
}
#' @keywords internal
.marginaleffects_slopes <- function() {
c("dY/dX", "eY/eX", "eY/dX", "dY/eX")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.