R/get_estimates.R

Defines functions get_estimates_parameters get_estimates_broom get_estimates

Documented in get_estimates

#' Extract model estimates in a tidy format.
#'
#' A unified approach to extract results from a wide variety of models. For
#' some models `get_estimates` attaches useful attributes to the output. You
#' can access this information by calling the `attributes` function:
#' `attributes(get_estimates(model))`
#'
#' @inheritParams modelsummary
#' @param model a single model object
#'
#' @export
get_estimates <- function(
  model,
  conf_level = .95,
  vcov = NULL,
  shape = NULL,
  coef_rename = FALSE,
  ...
) {
  if (is.null(conf_level)) {
    conf_int <- FALSE
  } else {
    conf_int <- TRUE
  }

  if (inherits(model, "modelsummary_list") && "tidy" %in% names(model)) {
    return(model[["tidy"]])
  }

  # this is usually done in `modelsummary`, but some users may call
  # `get_estimates(mod, vcov = "stata")`
  if (
    isTRUE(checkmate::check_string(vcov)) ||
      isTRUE(checkmate::check_formula(vcov))
  ) {
    vcov <- sanitize_vcov(list(vcov), list(model), ...)[[1]]
  }

  args <- append(list(model, "vcov" = vcov), list(...))

  vcov <- do.call("get_vcov", args)

  # priority: {parameters} messes up {marginaleffects}, whereas VAB controls `tidy()` exactly
  if (
    inherits(
      model,
      c("comparisons", "marginaleffects", "predictions", "marginalmeans")
    )
  ) {
    funs <- list(get_estimates_broom)
  } else {
    get_priority <- getOption("modelsummary_get", default = "easystats")
    checkmate::assert_choice(
      get_priority,
      choices = c("broom", "easystats", "parameters", "performance", "all")
    )
    if (get_priority %in% c("easystats", "parameters", "performance")) {
      funs <- list(get_estimates_parameters, get_estimates_broom)
    } else {
      funs <- list(get_estimates_broom, get_estimates_parameters)
    }
  }

  warning_msg <- NULL
  out <- NULL

  for (f in funs) {
    if (!inherits(out, "data.frame") || nrow(out) == 0) {
      if (is.matrix(vcov)) {
        V <- vcov
      } else {
        V <- NULL
      }
      out <- f(
        model,
        conf_int = conf_int,
        conf_level = conf_level,
        vcov = V,
        coef_rename = coef_rename,
        ...
      )
      if (is.character(out)) {
        warning_msg <- c(warning_msg, out)
      }
    }
  }

  if (!inherits(out, "data.frame")) {
    msg <- c(
      sprintf(
        '`modelsummary could not extract the required information from a model of class "%s". The package tried a sequence of 2 helper functions to extract estimates:',
        class(model)[1]
      ),
      '',
      'parameters::parameters(model)',
      'broom::tidy(model)',
      '',
      'To draw a table, one of these commands must return a `data.frame` with a column named "term". The `modelsummary` website explains how to summarize unsupported models or add support for new models yourself: https://modelsummary.com/vignettes/modelsummary.html',
      '',
      'These errors messages were generated during extraction:',
      '',
      ''
    )
    msg <- insight::format_message(msg)
    msg <- paste0(msg, paste(warning_msg, collapse = "\n"))
    stop(msg, call. = FALSE)
  }

  override <- function(old, new, columns) {
    columns <- setdiff(columns, c("term", shape$group_name))
    if (
      !inherits(new, "data.frame") ||
        nrow(new) == 0 ||
        !"term" %in% colnames(new)
    ) {
      return(old)
    }
    if (is.null(shape$group_name)) {
      def <- old[["term"]]
      cus <- new[["term"]]
    } else {
      def <- do.call("paste", as.list(old[, c("term", shape$group_name)]))
      cus <- do.call("paste", as.list(new[, c("term", shape$group_name)]))
    }
    idx <- match(def, cus)
    if (all(is.na(idx))) {
      warning(
        insight::format_message(
          "Term name mismatch. Make sure all `tidy_custom` method returns a data frame with proper and matching term names."
        ),
        call. = FALSE
      )
      return(old)
    }
    for (n in columns) {
      old[[n]] <- ifelse(is.na(idx), old[[n]], new[[n]][idx])
    }
    return(old)
  }

  # override standard errors if `vcov` is a named vector
  out <- override(old = out, new = vcov, columns = "std.error")

  # tidy_custom_internal (modelsummary customization avoids name conflict)
  out_custom <- tidy_custom_internal(model)
  out <- override(old = out, new = out_custom, columns = colnames(out_custom))

  # tidy_custom
  out_custom <- tidy_custom(model)
  out <- override(old = out, new = out_custom, columns = colnames(out_custom))

  # combine columns if requested in `shape` argument using an : interaction
  for (x in shape$combine) {
    vars <- strsplit(x, ":")[[1]]
    out[[vars[1]]] <- paste(out[[vars[1]]], out[[vars[2]]])
  }

  # term must be a character (not rounded with decimals when integer)
  out$term <- as.character(out$term)

  # standard columns may be missing, but a blank space is better than an
  # error, especially for mix of brms::brm() and lm(), for example
  for (col in c(
    "estimate",
    "std.error",
    "statistic",
    "p.value",
    "conf.low",
    "conf.high"
  )) {
    if (!col %in% colnames(out)) {
      out[[col]] <- NA_real_
    }
  }

  if (inherits(out, "data.frame")) {
    return(out)
  }
}


get_estimates_broom <- function(model, conf_int, conf_level, ...) {
  insight::check_if_installed("broom")
  insight::check_if_installed("generics")

  # broom::tidy()
  if (isTRUE(conf_int) && !is.null(conf_level)) {
    out <- suppressWarnings(try(
      broom::tidy(model, conf.int = conf_int, conf.level = conf_level, ...),
      silent = TRUE
    ))
  } else {
    out <- suppressWarnings(try(
      broom::tidy(model, conf.int = conf_int, ...),
      silent = TRUE
    ))
  }

  # generics::tidy()
  if (!inherits(out, "data.frame")) {
    if (isTRUE(conf_int) && !is.null(conf_level)) {
      out <- suppressWarnings(try(
        generics::tidy(
          model,
          conf.int = conf_int,
          conf.level = conf_level,
          ...
        ),
        silent = TRUE
      ))
    } else {
      out <- suppressWarnings(try(
        generics::tidy(model, conf.int = conf_int, ...),
        silent = TRUE
      ))
    }
  }

  if (!inherits(out, "data.frame") || nrow(out) < 1) {
    return("`broom::tidy(model)` did not return a valid data.frame.")
  }

  # shim for marginaleffects::hypotheses()
  if ("hypothesis" %in% colnames(out) && !"term" %in% colnames(out)) {
    colnames(out)[colnames(out) == "hypothesis"] <- "term"
  }

  if (!"term" %in% colnames(out)) {
    return(
      "`broom::tidy(model)` did not return a data.frame with a `term` column."
    )
  }

  return(out)
}


get_estimates_parameters <- function(
  model,
  conf_int,
  conf_level,
  vcov,
  coef_rename,
  ...
) {
  dots <- list(...)
  args <- c(list("model" = model), dots)
  args[["verbose"]] <- FALSE

  mi <- tryCatch(
    suppressMessages(suppressWarnings(insight::model_info(model))),
    error = function(e) NULL,
    warning = function(e) NULL
  )

  # extract everything by default
  if (!"effects" %in% names(dots)) args[["effects"]] <- "all"

  # confidence intervals
  if (isTRUE(conf_int)) {
    args[["ci"]] <- conf_level
  } else if (!"ci" %in% names(dots)) {
    # faster
    args <- c(args, list(ci = NULL))
    args[["ci_random"]] <- FALSE # do not append to avoid duplicate arg
  }

  # bayes: diagnostics can be very expensive
  if (isTRUE(mi[["is_bayesian"]])) {
    if (!"test" %in% names(dots)) args <- c(args, list("test" = NULL))
    if (!"diagnostic" %in% names(dots))
      args <- c(args, list("diagnostic" = NULL))
    if (!"dispersion" %in% names(dots))
      args <- c(args, list("dispersion" = TRUE))
  }

  # main call
  tidy_easystats <- function(...) {
    dots <- list(...)
    # ci_method="profile" in parameters() does not respect vcov argument
    if ("vcov" %in% names(dots) && !"ci_method" %in% names(dots)) {
      dots[["ci_method"]] <- "wald"
    }
    # bug in `parameters`
    if (isTRUE(dots$coef_rename)) {
      dots[["pretty_names"]] <- "labels"
    }
    inner <- parameters::parameters
    out <- do.call("inner", dots)
    out <- insight::standardize_names(out, style = "broom")

    # S-value (Greenland 2019)
    if ("p.value" %in% colnames(out)) {
      out$s.value <- sprintf("%.1f", -log2(out$p.value))
    }
    return(out)
  }

  if (is.character(vcov) || is.matrix(vcov)) {
    args[["vcov"]] <- vcov
  }
  out <- hush(tryCatch(
    do.call("tidy_easystats", args),
    error = function(e) NULL
  ))

  if (isTRUE(coef_rename)) {
    labs <- attr(out, "pretty_labels")
    labs <- gsub("\\*", "\u00d7", labs)
    out$term <- replace_dict(out$term, labs)
    out$term <- gsub("\\*", "\u00d7", out$term)
  }

  # errors and warnings: before processing the data frame term names
  if (!inherits(out, "data.frame") || nrow(out) < 1) {
    return("`parameters::parameters(model)` did not return a valid data.frame.")
  }

  # term names: lavaan
  # before check if there is a `term` name column
  if (
    inherits(model, "lavaan") &&
      all(c("to", "operator", "from") %in% colnames(out))
  ) {
    out$term <- paste(out$to, out$operator, out$from)
    out$to <- out$operator <- out$from <- NULL
  }

  if (
    inherits(model, "htest") &&
      !"term" %in% colnames(out) &&
      "method" %in% colnames(out)
  ) {
    out$term <- "method"
  }

  if (!"term" %in% colnames(out)) {
    return(
      "`parameters::parameters(model)` did not return a data.frame with a `term` column."
    )
  }

  # term names: mixed-effects
  if (isTRUE(mi[["is_mixed"]]) && isTRUE("group" %in% colnames(out))) {
    idx <- out$term != "SD (Observations)" &
      out$group != "" &
      !grepl(":", out$term) &
      grepl("\\)$", out$term)
    out$term <- ifelse(
      idx,
      sprintf("%s: %s)", gsub("\\)$", "", out$term), out$group),
      out$term
    )
    # otherwise gets converted to x
    out$term <- ifelse(idx, gsub(":", "", out$term), out$term)
  }

  # "group" column is required to merge lm() and lme4::lmer(), and other grouped and non-grouped models.
  if (!"group" %in% colnames(out)) {
    out[["group"]] <- ""
  }

  return(out)
}

Try the modelsummary package in your browser

Any scripts or data that you put into this service are public.

modelsummary documentation built on June 8, 2025, 9:32 p.m.