Nothing
# These functions are tested indirectly when the models are used. Since this
# function is executed on package startup, you can't execute them to test since
# they are already in the parsnip model database. We'll exclude them from
# coverage stats for this reason.
# nocov start
make_adam_reg <- function(){
model <- "adam_reg"
engine <- "adam"
parsnip::set_new_model(model)
parsnip::set_model_mode(model, "regression")
# ADAM ----
# * Model ----
parsnip::set_model_engine(model, mode = "regression", eng = engine)
parsnip::set_dependency(model, engine, "smooth")
parsnip::set_dependency(model, engine, "modeltime")
# * Args ----
parsnip::set_model_arg(
model = model,
eng = engine,
parsnip = "ets_model",
original = "model",
func = list(pkg = "modeltime", fun = "ets_model"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine,
parsnip = "non_seasonal_ar",
original = "p",
func = list(pkg = "modeltime", fun = "non_seasonal_ar"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine,
parsnip = "non_seasonal_differences",
original = "d",
func = list(pkg = "modeltime", fun = "non_seasonal_differences"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine,
parsnip = "non_seasonal_ma",
original = "q",
func = list(pkg = "modeltime", fun = "non_seasonal_ma"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine,
parsnip = "seasonal_ar",
original = "P",
func = list(pkg = "modeltime", fun = "seasonal_ar"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine,
parsnip = "seasonal_differences",
original = "D",
func = list(pkg = "modeltime", fun = "seasonal_differences"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine,
parsnip = "seasonal_ma",
original = "Q",
func = list(pkg = "modeltime", fun = "seasonal_ma"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine,
parsnip = "use_constant",
original = "constant",
func = list(pkg = "modeltime", fun = "use_constant"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine,
parsnip = "regressors_treatment",
original = "regressors",
func = list(pkg = "modeltime", fun = "regressors_treatment"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine,
parsnip = "outliers_treatment",
original = "outliers",
func = list(pkg = "modeltime", fun = "outliers_treatment"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine,
parsnip = "outliers_ci",
original = "level",
func = list(pkg = "modeltime", fun = "outliers_ci"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine,
parsnip = "probability_model",
original = "occurrence",
func = list(pkg = "modeltime", fun = "probability_model"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine,
parsnip = "distribution",
original = "distribution",
func = list(pkg = "modeltime", fun = "distribution"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine,
parsnip = "loss",
original = "loss",
func = list(pkg = "modeltime", fun = "loss"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine,
parsnip = "information_criteria",
original = "ic",
func = list(pkg = "modeltime", fun = "information_criteria"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine,
parsnip = "seasonal_period",
original = "period",
func = list(pkg = "modeltime", fun = "seasonal_period"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine,
parsnip = "select_order",
original = "select_order",
func = list(pkg = "modeltime", fun = "select_order"),
has_submodel = FALSE
)
# * Encoding ----
parsnip::set_encoding(
model = model,
eng = engine,
mode = "regression",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
# * Fit ----
parsnip::set_fit(
model = model,
eng = engine,
mode = "regression",
value = list(
interface = "data.frame",
protect = c("x", "y"),
func = c(fun = "adam_fit_impl"),
defaults = list()
)
)
# * Predict ----
parsnip::set_pred(
model = model,
eng = engine,
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = NULL, #function(results, object) { res <- tibble::as_tibble(results) %>% purrr::set_names(".pred")},
func = c(fun = "predict"),
args =
list(
object = rlang::expr(object$fit),
new_data = rlang::expr(new_data)
)
)
)
# AUTO ADAM ----
engine_auto <- "auto_adam"
# * Model ----
parsnip::set_model_engine(model, mode = "regression", eng = engine_auto)
parsnip::set_dependency(model, engine_auto, "smooth")
parsnip::set_dependency(model, engine_auto, "modeltime")
# * Args ----
parsnip::set_model_arg(
model = model,
eng = engine_auto,
parsnip = "ets_model",
original = "model",
func = list(pkg = "modeltime", fun = "ets_model"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine_auto,
parsnip = "non_seasonal_ar",
original = "p",
func = list(pkg = "modeltime", fun = "non_seasonal_ar"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine_auto,
parsnip = "non_seasonal_differences",
original = "d",
func = list(pkg = "modeltime", fun = "non_seasonal_differences"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine_auto,
parsnip = "non_seasonal_ma",
original = "q",
func = list(pkg = "modeltime", fun = "non_seasonal_ma"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine_auto,
parsnip = "seasonal_ar",
original = "P",
func = list(pkg = "modeltime", fun = "seasonal_ar"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine_auto,
parsnip = "seasonal_differences",
original = "D",
func = list(pkg = "modeltime", fun = "seasonal_differences"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine_auto,
parsnip = "seasonal_ma",
original = "Q",
func = list(pkg = "modeltime", fun = "seasonal_ma"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine_auto,
parsnip = "use_constant",
original = "constant",
func = list(pkg = "modeltime", fun = "use_constant"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine_auto,
parsnip = "regressors_treatment",
original = "regressors",
func = list(pkg = "modeltime", fun = "regressors_treatment"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine_auto,
parsnip = "outliers_treatment",
original = "outliers",
func = list(pkg = "modeltime", fun = "outliers_treatment"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine_auto,
parsnip = "outliers_ci",
original = "level",
func = list(pkg = "modeltime", fun = "outliers_ci"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine_auto,
parsnip = "probability_model",
original = "occurrence",
func = list(pkg = "modeltime", fun = "probability_model"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine_auto,
parsnip = "distribution",
original = "distribution",
func = list(pkg = "modeltime", fun = "distribution"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine_auto,
parsnip = "loss",
original = "loss",
func = list(pkg = "modeltime", fun = "loss"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine_auto,
parsnip = "information_criteria",
original = "ic",
func = list(pkg = "modeltime", fun = "information_criteria"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine_auto,
parsnip = "seasonal_period",
original = "period",
func = list(pkg = "modeltime", fun = "seasonal_period"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = model,
eng = engine_auto,
parsnip = "select_order",
original = "select_order",
func = list(pkg = "modeltime", fun = "select_order"),
has_submodel = FALSE
)
# * Encoding ----
parsnip::set_encoding(
model = model,
eng = engine_auto,
mode = "regression",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
# * Fit ----
parsnip::set_fit(
model = model,
eng = engine_auto,
mode = "regression",
value = list(
interface = "data.frame",
protect = c("x", "y"),
func = c(fun = "auto_adam_fit_impl"),
defaults = list()
)
)
# * Predict ----
parsnip::set_pred(
model = model,
eng = engine_auto,
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args =
list(
object = rlang::expr(object$fit),
new_data = rlang::expr(new_data)
)
)
)
}
# nocov end
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.