Nothing
# These functions are tested indirectly when the models are used. Since this
# function is executed on package startup, you can't execute them to test since
# they are already in the parsnip model database. We'll exclude them from
# coverage stats for this reason.
# nocov start
make_arima_boost <- function() {
parsnip::set_new_model("arima_boost")
parsnip::set_model_mode("arima_boost", "regression")
# auto_arima_xgboost ----
# * Model ----
parsnip::set_model_engine("arima_boost", mode = "regression", eng = "auto_arima_xgboost")
parsnip::set_dependency("arima_boost", "auto_arima_xgboost", "forecast")
parsnip::set_dependency("arima_boost", "auto_arima_xgboost", "xgboost")
parsnip::set_dependency("arima_boost", "auto_arima_xgboost", "modeltime")
# * Args - ARIMA ----
parsnip::set_model_arg(
model = "arima_boost",
eng = "auto_arima_xgboost",
parsnip = "seasonal_period",
original = "period",
func = list(pkg = "modeltime", fun = "seasonal_period"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "auto_arima_xgboost",
parsnip = "non_seasonal_ar",
original = "max.p",
func = list(pkg = "modeltime", fun = "non_seasonal_ar"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "auto_arima_xgboost",
parsnip = "non_seasonal_differences",
original = "max.d",
func = list(pkg = "modeltime", fun = "non_seasonal_differences"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "auto_arima_xgboost",
parsnip = "non_seasonal_ma",
original = "max.q",
func = list(pkg = "modeltime", fun = "non_seasonal_ma"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "auto_arima_xgboost",
parsnip = "seasonal_ar",
original = "max.P",
func = list(pkg = "modeltime", fun = "seasonal_ar"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "auto_arima_xgboost",
parsnip = "seasonal_differences",
original = "max.D",
func = list(pkg = "modeltime", fun = "seasonal_differences"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "auto_arima_xgboost",
parsnip = "seasonal_ma",
original = "max.Q",
func = list(pkg = "modeltime", fun = "seasonal_ma"),
has_submodel = FALSE
)
# * Args - Xgboost ----
parsnip::set_model_arg(
model = "arima_boost",
eng = "auto_arima_xgboost",
parsnip = "tree_depth",
original = "max_depth",
func = list(pkg = "dials", fun = "tree_depth"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "auto_arima_xgboost",
parsnip = "trees",
original = "nrounds",
func = list(pkg = "dials", fun = "trees"),
has_submodel = TRUE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "auto_arima_xgboost",
parsnip = "learn_rate",
original = "eta",
func = list(pkg = "dials", fun = "learn_rate"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "auto_arima_xgboost",
parsnip = "mtry",
original = "colsample_bynode",
func = list(pkg = "dials", fun = "mtry"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "auto_arima_xgboost",
parsnip = "min_n",
original = "min_child_weight",
func = list(pkg = "dials", fun = "min_n"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "auto_arima_xgboost",
parsnip = "loss_reduction",
original = "gamma",
func = list(pkg = "dials", fun = "loss_reduction"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "auto_arima_xgboost",
parsnip = "sample_size",
original = "subsample",
func = list(pkg = "dials", fun = "sample_size"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "auto_arima_xgboost",
parsnip = "stop_iter",
original = "early_stop",
func = list(pkg = "dials", fun = "stop_iter"),
has_submodel = FALSE
)
# * Encoding ----
parsnip::set_encoding(
model = "arima_boost",
eng = "auto_arima_xgboost",
mode = "regression",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
# * Fit ----
parsnip::set_fit(
model = "arima_boost",
eng = "auto_arima_xgboost",
mode = "regression",
value = list(
interface = "data.frame",
protect = c("x", "y"),
func = c(fun = "auto_arima_xgboost_fit_impl"),
defaults = list(objective = "reg:squarederror", nthread = 1, verbose = 0)
)
)
# * Predict ----
parsnip::set_pred(
model = "arima_boost",
eng = "auto_arima_xgboost",
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args =
list(
object = rlang::expr(object$fit),
new_data = rlang::expr(new_data)
)
)
)
# arima_xgboost ----
# * Model ----
parsnip::set_model_engine("arima_boost", mode = "regression", eng = "arima_xgboost")
parsnip::set_dependency("arima_boost", "arima_xgboost", "forecast")
parsnip::set_dependency("arima_boost", "arima_xgboost", "xgboost")
parsnip::set_dependency("arima_boost", "arima_xgboost", "modeltime")
# * Args - ARIMA ----
parsnip::set_model_arg(
model = "arima_boost",
eng = "arima_xgboost",
parsnip = "seasonal_period",
original = "period",
func = list(pkg = "modeltime", fun = "seasonal_period"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "arima_xgboost",
parsnip = "non_seasonal_ar",
original = "p",
func = list(pkg = "modeltime", fun = "non_seasonal_ar"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "arima_xgboost",
parsnip = "non_seasonal_differences",
original = "d",
func = list(pkg = "modeltime", fun = "non_seasonal_differences"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "arima_xgboost",
parsnip = "non_seasonal_ma",
original = "q",
func = list(pkg = "modeltime", fun = "non_seasonal_ma"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "arima_xgboost",
parsnip = "seasonal_ar",
original = "P",
func = list(pkg = "modeltime", fun = "seasonal_ar"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "arima_xgboost",
parsnip = "seasonal_differences",
original = "D",
func = list(pkg = "modeltime", fun = "seasonal_differences"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "arima_xgboost",
parsnip = "seasonal_ma",
original = "Q",
func = list(pkg = "modeltime", fun = "seasonal_ma"),
has_submodel = FALSE
)
# * Args - XGBoost ----
parsnip::set_model_arg(
model = "arima_boost",
eng = "arima_xgboost",
parsnip = "tree_depth",
original = "max_depth",
func = list(pkg = "dials", fun = "tree_depth"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "arima_xgboost",
parsnip = "trees",
original = "nrounds",
func = list(pkg = "dials", fun = "trees"),
has_submodel = TRUE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "arima_xgboost",
parsnip = "learn_rate",
original = "eta",
func = list(pkg = "dials", fun = "learn_rate"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "arima_xgboost",
parsnip = "mtry",
original = "colsample_bynode",
func = list(pkg = "dials", fun = "mtry"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "arima_xgboost",
parsnip = "min_n",
original = "min_child_weight",
func = list(pkg = "dials", fun = "min_n"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "arima_xgboost",
parsnip = "loss_reduction",
original = "gamma",
func = list(pkg = "dials", fun = "loss_reduction"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "arima_xgboost",
parsnip = "sample_size",
original = "subsample",
func = list(pkg = "dials", fun = "sample_size"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "arima_boost",
eng = "arima_xgboost",
parsnip = "stop_iter",
original = "early_stop",
func = list(pkg = "dials", fun = "stop_iter"),
has_submodel = FALSE
)
# * Encoding ----
parsnip::set_encoding(
model = "arima_boost",
eng = "arima_xgboost",
mode = "regression",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
# * Fit ----
parsnip::set_fit(
model = "arima_boost",
eng = "arima_xgboost",
mode = "regression",
value = list(
interface = "data.frame",
protect = c("x", "y"),
func = c(fun = "arima_xgboost_fit_impl"),
defaults = list(objective = "reg:squarederror", nthread = 1, verbose = 0)
)
)
# * Predict ----
parsnip::set_pred(
model = "arima_boost",
eng = "arima_xgboost",
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args =
list(
object = rlang::expr(object$fit),
new_data = rlang::expr(new_data)
)
)
)
}
# nocov end
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.