Nothing
# These functions are tested indirectly when the models are used. Since this
# function is executed on package startup, you can't execute them to test since
# they are already in the parsnip model database. We'll exclude them from
# coverage stats for this reason.
# nocov
make_window_reg <- function() {
parsnip::set_new_model("window_reg")
parsnip::set_model_mode("window_reg", "regression")
# window_function ----
# * Model ----
parsnip::set_model_engine("window_reg", mode = "regression", eng = "window_function")
parsnip::set_dependency("window_reg", eng = "window_function", pkg = "modeltime")
# * Args ----
parsnip::set_model_arg(
model = "window_reg",
eng = "window_function",
parsnip = "id",
original = "id",
func = list(pkg = "modeltime", fun = "id"),
has_submodel = FALSE
)
# parsnip::set_model_arg(
# model = "window_reg",
# eng = "window_function",
# parsnip = "window_function",
# original = "window_function",
# func = list(pkg = "modeltime", fun = "window_function"),
# has_submodel = FALSE
# )
parsnip::set_model_arg(
model = "window_reg",
eng = "window_function",
parsnip = "window_size",
original = "window_size",
func = list(pkg = "dials", fun = "window_size"),
has_submodel = FALSE
)
# * Encoding ----
parsnip::set_encoding(
model = "window_reg",
eng = "window_function",
mode = "regression",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
# * Fit ----
parsnip::set_fit(
model = "window_reg",
eng = "window_function",
mode = "regression",
value = list(
interface = "data.frame",
protect = c("x", "y"),
func = c(fun = "window_function_fit_impl"),
defaults = list()
)
)
# * Predict ----
parsnip::set_pred(
model = "window_reg",
eng = "window_function",
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args =
list(
object = rlang::expr(object$fit),
new_data = rlang::expr(new_data)
)
)
)
# # window_lm ----
#
# # * Model ----
# parsnip::set_model_engine("window_reg", mode = "regression", eng = "window_lm")
# parsnip::set_dependency("window_reg", eng = "window_lm", pkg = "modeltime")
#
# # * Args ----
# parsnip::set_model_arg(
# model = "window_reg",
# eng = "window_lm",
# parsnip = "id",
# original = "id",
# func = list(pkg = "modeltime", fun = "id"),
# has_submodel = FALSE
# )
#
# # parsnip::set_model_arg(
# # model = "window_reg",
# # eng = window_lm,
# # parsnip = "window_function",
# # original = "window_function",
# # func = list(pkg = "modeltime", fun = "window_function"),
# # has_submodel = FALSE
# # )
#
# parsnip::set_model_arg(
# model = "window_reg",
# eng = "window_lm",
# parsnip = "window_size",
# original = "window_size",
# func = list(pkg = "dials", fun = "window_size"),
# has_submodel = FALSE
# )
#
# # * Encoding ----
# parsnip::set_encoding(
# model = "window_reg",
# eng = "window_lm",
# mode = "regression",
# options = list(
# predictor_indicators = "none",
# compute_intercept = FALSE,
# remove_intercept = FALSE,
# allow_sparse_x = FALSE
# )
# )
#
# # * Fit ----
# parsnip::set_fit(
# model = "window_reg",
# eng = "window_lm",
# mode = "regression",
# value = list(
# interface = "data.frame",
# protect = c("x", "y"),
# func = c(fun = "window_lm_fit_impl"),
# defaults = list()
# )
# )
#
# # * Predict ----
# parsnip::set_pred(
# model = "window_reg",
# eng = "window_lm",
# mode = "regression",
# type = "numeric",
# value = list(
# pre = NULL,
# post = NULL,
# func = c(fun = "predict"),
# args =
# list(
# object = rlang::expr(object$fit),
# new_data = rlang::expr(new_data)
# )
# )
# )
}
# nocov end
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.