Nothing
library(tidymodels)
library(tibble)
library(dplyr)
library(timetk)
test_that("default_forecast_accuracy_metric_set works", {
skip_on_cran()
set.seed(1)
data <- tibble(
time = tk_make_timeseries("2020", by = "sec", length_out = 10),
y = 1:10 + rnorm(10),
y_hat = 1:10 + rnorm(10)
)
# Create a metric summarizer function from the metric set
calc_default_metrics <- default_forecast_accuracy_metric_set(yardstick::mae)
# Apply the metric summarizer to new data
ret <- calc_default_metrics(data, y, y_hat)
expect_equal(nrow(ret), 7)
})
test_that("summarize_accuracy_metrics works", {
skip_on_cran()
predictions_tbl <- tibble(
group = c(rep("model_1", 4),
rep("model_2", 4)),
truth = c(1, 2, 3, 4,
1, 2, 3, 4),
estimate = c(1.2, 2.0, 2.5, 2.9,
0.9, 1.9, 3.3, 3.9)
)
accuracy_tbl <- predictions_tbl %>%
group_by(group) %>%
summarize_accuracy_metrics(
truth, estimate,
metric_set = default_forecast_accuracy_metric_set()
)
expect_equal(ncol(accuracy_tbl), 7)
accuracy_tbl <- predictions_tbl %>%
group_by(group) %>%
summarize_accuracy_metrics(
truth, estimate,
metric_set = default_forecast_accuracy_metric_set(
yardstick::mae
)
)
expect_equal(ncol(accuracy_tbl), 8)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.