Nothing
#' Peptide-level: Quantitative precision
#'
#' Calculate quantitative precision on peptide-level
#'
#' For each submitted data the coefficient of variation is calculated on peptide-level for LFQ intensities. Only full profiles are included.
#'
#' @param input_list A list with data frames and respective quantitative peptide information.
#'
#' @author Oliver Kardell
#'
#' @import stringr
#' @importFrom magrittr %>%
#'
#' @return This function returns the original submitted data of the \code{input_list} including a new output column:
#' \itemize{
#' \item CV_Peptide_LFQ_mpwR - coefficient of variation in percentage.
#' }
#'
#' @export
#'
#' @examples
#' # Load libraries
#' library(stringr)
#' library(magrittr)
#' library(tibble)
#'
#' # Example data
#' set.seed(123)
#' data <- list(
#' Spectronaut = list(
#' filename = "C",
#' software = "Spectronaut",
#' data = list(
#' "Spectronaut" = tibble::tibble(
#' Run_mpwR = rep(c("A","B"), times = 5),
#' Precursor.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 2),
#' Stripped.Sequence_mpwR = rep(c("A", "B", "C", "D", "E"), each = 2),
#' Peptide.IDs_mpwR = rep(c("A", "B", "C", "D", "E"), each = 2),
#' ProteinGroup.IDs_mpwR = rep(c("A", "B", "C", "D", "E"), each = 2),
#' Retention.time_mpwR = sample(1:20, 10),
#' Peptide_LFQ_mpwR = sample(1:30, 10),
#' ProteinGroup_LFQ_mpwR = sample(1:30, 10))
#' )
#' )
#' )
#'
#' # Result
#' output <- get_CV_LFQ_pep(
#' input_list = data
#' )
get_CV_LFQ_pep <- function(input_list) {
#dependency ===
cols_MQ_pep <- c("Stripped.Sequence_mpwR")
cols_MQ_pepLFQ <- c("LFQ intensity")
cols <- c("Run_mpwR", "Peptide_LFQ_mpwR", "Stripped.Sequence_mpwR")
#handle global vars
. <- NULL
output_list <- list()
for (i in seq_len(length(input_list))) {
if (input_list[[i]][["software"]] == "Spectronaut") {
#check cols
if (sum(colnames(input_list[[i]][["data"]][["Spectronaut"]]) %in% cols) != length(cols)) {
stop(paste0("Not all required columns - wrong input_list? Check position ", i, " in input_list."))
}
#==
output_list[[i]] <- calculate_CV(input_df = input_list[[i]][["data"]][["Spectronaut"]], analysis_name = input_list[[i]][["filename"]], cv_col = "Peptide_LFQ")
names(output_list)[i] <- input_list[[i]][["filename"]]
next
} else if (input_list[[i]][["software"]] == "MaxQuant") {
#check cols
if (sum(colnames(input_list[[i]][["data"]][["pep"]]) %in% cols_MQ_pep) != length(cols_MQ_pep) | sum(stringr::str_detect(string = colnames(input_list[[i]][["data"]][["pep"]]), pattern = cols_MQ_pepLFQ)) == 0) {
stop(paste0("Not all required columns - wrong input_list? Check position ", i, " in input_list."))
}
#==
output_list[[i]] <- tidy_MQ_LFQ(input_df = input_list[[i]][["data"]][["pep"]], cv_col = "Peptide_LFQ") %>%
calculate_CV(input_df = ., analysis_name = input_list[[i]][["filename"]], cv_col = "Peptide_LFQ")
names(output_list)[i] <- input_list[[i]][["filename"]]
next
} else if (input_list[[i]][["software"]] == "DIA-NN" | input_list[[i]][["software"]] == "PD") {
if (input_list[[i]][["software"]] == "DIA-NN") {
message("For DIA-NN no quantitative LFQ data on peptide-level.")
} else if (input_list[[i]][["software"]] == "PD") {
message("For PD no quantitative LFQ data on peptide-level.")
}
output_list[i] <- NA
names(output_list)[i] <- NA
} else if (input_list[[i]][["software"]] == "Generic") {
#check cols
if (sum(colnames(input_list[[i]][["data"]][["Generic"]]) %in% cols) != length(cols)) {
stop(paste0("Not all required columns - wrong input_list? Check position ", i, " in input_list."))
}
#==
output_list[[i]] <- calculate_CV(input_df = input_list[[i]][["data"]][["Generic"]], analysis_name = input_list[[i]][["filename"]], cv_col = "Peptide_LFQ")
names(output_list)[i] <- input_list[[i]][["filename"]]
next
}
}
output_list <- output_list[which(!is.na(names(output_list)))] #remove NAs - for each PD and DIA-NN entry
return(output_list)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.