Nothing
#' Generate Upset list
#'
#' Generate a list as input for Upset plot
#'
#' An input is generated for Upset plotting for either precursor-, peptide-, protein- or proteingroup-level. For inter-software comparisons flowTraceR is integrated.
#'
#' @param input_list A list with data frames and respective level information.
#' @param level Character string. Choose between "Precursor.IDs", "Peptide.IDs", "Protein.IDs", "ProteinGroup.IDs". Default is "Precursor.IDs".
#' @param percentage_runs Number. Percentage of appearance in runs. 100 means: Identification is present in 100% of runs. Default is 100.
#' @param flowTraceR Logical. If FALSE no level conversion is applied. Useful for inter-software comparisons. Default is FALSE.
#' @param remove_traceR_unknownMods Logical. If FALSE no unknown Modifications are filtered out. Only applies if flowTraceR is set to TRUE. Default is FALSE.
#'
#' @author Oliver Kardell
#'
#' @import stringr
#' @importFrom magrittr %>%
#'
#' @return This function returns a list for each analysis with respective level information.
#'
#' @export
#'
#' @examples
#' # Load libraries
#' library(tibble)
#' library(magrittr)
#' library(stringr)
#'
#' # Example data
#' data <- list(
#' DIANN = list(
#' filename = "B",
#' software = "DIA-NN",
#' data = list(
#' "DIA-NN" = tibble::tibble(
#' Run_mpwR = rep(c("A","B"), times = 10),
#' Precursor.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4),
#' Protein.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4),
#' Peptide.IDs_mpwR = rep(c("A", "A", "B", "B", "C"), each = 4),
#' ProteinGroup.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4)
#' )
#' )
#' ),
#' Spectronaut = list(
#' filename = "C",
#' software = "Spectronaut",
#' data = list(
#' "Spectronaut" = tibble::tibble(
#' Run_mpwR = rep(c("A","B"), times = 15),
#' Precursor.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 6),
#' Peptide.IDs_mpwR = rep(c("A", "A", "B", "B", "C"), each = 6),
#' ProteinGroup.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 6)
#' )
#' )
#' )
#' )
#'
#' # Result
#' output <- get_Upset_list(
#' input_list = data,
#' level = "Precursor.IDs"
#' )
get_Upset_list <- function(input_list,
level = c("Precursor.IDs", "Peptide.IDs", "Protein.IDs", "ProteinGroup.IDs"),
percentage_runs = 100,
flowTraceR = FALSE,
remove_traceR_unknownMods = FALSE) {
#dependency ===
if (level[1] %in% c("Precursor.IDs", "Peptide.IDs", "Protein.IDs", "ProteinGroup.IDs") == FALSE) {
stop("Please check your level entry - only use Precursor.IDs, Peptide.IDs, Protein.IDs or ProteinGroup.IDs")
}
#dependency ===
cols_MQ_ev <- c("Run_mpwR", "Precursor.IDs_mpwR", "Peptide.IDs_mpwR", "Protein.IDs_mpwR")
cols_MQ_pg <- c("ProteinGroup.IDs_mpwR")
cols_MQ_pg_intensity <- c("Intensity")
cols_PD_prot <- c("Run_mpwR", "Protein.IDs_mpwR")
cols_PD_psm <- c("Run_mpwR", "Precursor.IDs_mpwR", "Peptide.IDs_mpwR")
cols_spec <- c("Run_mpwR", "Precursor.IDs_mpwR", "Peptide.IDs_mpwR", "ProteinGroup.IDs_mpwR")
cols <- c("Run_mpwR", "Precursor.IDs_mpwR", "Peptide.IDs_mpwR", "Protein.IDs_mpwR", "ProteinGroup.IDs_mpwR")
#===
#handle global vars
. <- NULL
output_list <- list()
for (i in seq_len(length(input_list))) {
if (input_list[[i]][["software"]] == "DIA-NN") {
#check cols
if (sum(colnames(input_list[[i]][["data"]][["DIA-NN"]]) %in% cols) != length(cols)) {
stop(paste0("Not all required columns - wrong input_list? Check position ", i, " in input_list."))
}
#==
output_list[[i]] <- prepare_Upset(input_df = input_list[[i]][["data"]][["DIA-NN"]], software = "DIA-NN", level = level[1], percentage_runs = percentage_runs, flowTraceR = flowTraceR, remove_traceR_unknownMods = remove_traceR_unknownMods)
names(output_list)[i] <- input_list[[i]][["filename"]]
next
} else if (input_list[[i]][["software"]] == "Spectronaut") {
if (level[1] == "Protein.IDs") {
message("Protein-level not available for Spectronaut.")
next
}
#check cols
if (sum(colnames(input_list[[i]][["data"]][["Spectronaut"]]) %in% cols_spec) != length(cols_spec)) {
stop(paste0("Not all required columns - wrong input_list? Check position ", i, " in input_list."))
}
#==
output_list[[i]] <- prepare_Upset(input_df = input_list[[i]][["data"]][["Spectronaut"]], software = "Spectronaut", level = level[1], percentage_runs = percentage_runs, flowTraceR = flowTraceR, remove_traceR_unknownMods = remove_traceR_unknownMods)
names(output_list)[i] <- input_list[[i]][["filename"]]
next
} else if (input_list[[i]][["software"]] == "MaxQuant") {
#check cols
if (sum(colnames(input_list[[i]][["data"]][["ev"]]) %in% cols_MQ_ev) != length(cols_MQ_ev) | sum(stringr::str_detect(string = colnames(input_list[[i]][["data"]][["pg"]]), pattern = cols_MQ_pg)) == 0 | sum(stringr::str_detect(string = colnames(input_list[[i]][["data"]][["pg"]]), pattern = cols_MQ_pg_intensity)) == 0) {
stop(paste0("Not all required columns - wrong input_list? Check position ", i, " in input_list."))
}
#==
if (level[1] == "ProteinGroup.IDs") {
output_list[[i]] <- tidy_MQ_pep_pg(input_list[[i]][["data"]][["pg"]]) %>%
prepare_Upset(input_df = ., software = "MaxQuant", level = level[1], percentage_runs = percentage_runs, flowTraceR = flowTraceR, remove_traceR_unknownMods = remove_traceR_unknownMods)
names(output_list)[i] <- input_list[[i]][["filename"]]
next
} else if (level[1] == "Precursor.IDs" | level[1] == "Peptide.IDs" | level[1] == "Protein.IDs") {
output_list[[i]] <- prepare_Upset(input_df = input_list[[i]][["data"]][["ev"]], software = "MaxQuant", level = level[1], percentage_runs = percentage_runs, flowTraceR = flowTraceR, remove_traceR_unknownMods = remove_traceR_unknownMods)
names(output_list)[i] <- input_list[[i]][["filename"]]
next
}
} else if (input_list[[i]][["software"]] == "PD") {
#check cols
if (sum(colnames(input_list[[i]][["data"]][["psm"]]) %in% cols_PD_psm) != length(cols_PD_psm) | sum(colnames(input_list[[i]][["data"]][["prot"]]) %in% cols_PD_prot) != length(cols_PD_prot)) {
stop(paste0("Not all required columns - wrong input_list? Check position ", i, " in input_list."))
}
#==
if (level[1] == "Protein.IDs") {
output_list[[i]] <- prepare_Upset(input_df = input_list[[i]][["data"]][["prot"]], software = "PD", level = level[1], percentage_runs = percentage_runs, flowTraceR = flowTraceR, remove_traceR_unknownMods = remove_traceR_unknownMods)
names(output_list)[i] <- input_list[[i]][["filename"]]
} else if (level[1] == "Precursor.IDs" | level[1] == "Peptide.IDs" | level[1] == "ProteinGroup.IDs") {
output_list[[i]] <- prepare_Upset(input_df = input_list[[i]][["data"]][["psm"]], software = "PD", level = level[1], percentage_runs = percentage_runs, flowTraceR = flowTraceR, remove_traceR_unknownMods = remove_traceR_unknownMods)
names(output_list)[i] <- input_list[[i]][["filename"]]
next
}
} else if (input_list[[i]][["software"]] == "Generic") {
#check cols
if (sum(colnames(input_list[[i]][["data"]][["Generic"]]) %in% cols) != length(cols)) {
stop(paste0("Not all required columns - wrong input_list? Check position ", i, " in input_list."))
}
#==
output_list[[i]] <- prepare_Upset(input_df = input_list[[i]][["data"]][["Generic"]], software = "Generic", level = level[1], percentage_runs = percentage_runs, flowTraceR = FALSE, remove_traceR_unknownMods = FALSE)
names(output_list)[i] <- input_list[[i]][["filename"]]
if (flowTraceR == TRUE) {
message(paste0("flowTraceR not available for generic input. No conversion applied for position ", i, " in input_list."))
}
next
}
}
output_list <- output_list[names(output_list) != ""] #NULL entries for Spectronaut - Protein.IDs - in names: ""
return(output_list)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.