Nothing
#' Expected length of stay
#'
#' Given a \code{"probtrans"} object, ELOS calculates the (restricted) expected
#' length of stay in each of the states of the multi-state model.
#'
#' The object \code{pt} needs to be a \code{"probtrans"} object, obtained with
#' forward prediction (the default, \code{direction}=\code{"forward"}, in the
#' call to \code{\link{probtrans}}). The restriction to \code{tau} is there
#' because, as in ordinary survival analysis, the probability of being in a
#' state can be positive until infinity, resulting in infinite values. The
#' (restricted, until tau) expected length of stay in state h, given in state g
#' at time s, is given by the integral from s to tau of P_gh(s,t), see for
#' instance Beyersmann and Putter (2014).
#'
#' @param pt An object of class \code{"probtrans"}
#' @param tau The horizon until which ELOS is calculated; if missing, the
#' maximum of the observed transition times is taken
#' @return A K x K matrix (with K number of states), with the (g,h)'th element
#' containing E_gh(s,tau). The starting time point s is inferred from \code{pt}
#' (the smallest time point, should be equal to the \code{predt} value in the
#' call to \code{\link{probtrans}}. The row- and column names of the matrix
#' have been named "from1" until "fromK" and "in1" until "inK", respectively.
#' @author Hein Putter \email{H.Putter@@lumc.nl}
#' @keywords univar
#' @examples
#'
#' # transition matrix for illness-death model
#' tmat <- trans.illdeath()
#' # data in wide format, for transition 1 this is dataset E1 of
#' # Therneau & Grambsch (2000)
#' tg <- data.frame(illt=c(1,1,6,6,8,9),ills=c(1,0,1,1,0,1),
#' dt=c(5,1,9,7,8,12),ds=c(1,1,1,1,1,1),
#' x1=c(1,1,1,0,0,0),x2=c(6:1))
#' # data in long format using msprep
#' tglong <- msprep(time=c(NA,"illt","dt"),status=c(NA,"ills","ds"),
#' data=tg,keep=c("x1","x2"),trans=tmat)
#' # events
#' events(tglong)
#' table(tglong$status,tglong$to,tglong$from)
#' # expanded covariates
#' tglong <- expand.covs(tglong,c("x1","x2"))
#' # Cox model with different covariate
#' cx <- coxph(Surv(Tstart,Tstop,status)~x1.1+x2.2+strata(trans),
#' data=tglong,method="breslow")
#' summary(cx)
#' # new data, to check whether results are the same for transition 1 as
#' # those in appendix E.1 of Therneau & Grambsch (2000)
#' newdata <- data.frame(trans=1:3,x1.1=c(0,0,0),x2.2=c(0,1,0),strata=1:3)
#' HvH <- msfit(cx,newdata,trans=tmat)
#' # probtrans
#' pt <- probtrans(HvH,predt=0)
#' # ELOS until last observed time point
#' ELOS(pt)
#' # Restricted ELOS until tau=10
#' ELOS(pt, tau=10)
#'
#' @export ELOS
ELOS <- function(pt, tau) {
if (!inherits(pt, "probtrans"))
stop("'pt' must be a 'probtrans' object")
if (pt$direction != "forward")
stop("ELOS only works if direction==\"forward\" ")
tt <- pt[[1]]$time
if (missing(tau)) tau <- max(tt)
if (tau<min(tt)) stop("tau should be larger than predt")
tmat <- pt$trans
K <- nrow(tmat)
res <- matrix(NA, K, K)
for (k in 1:K) {
ptk <- pt[[k]]
ptk <- subset(ptk, time<=tau)
if (any(ptk[,(2:(K+1))]<0))
warning("negative transition probabilities present; ELOS may not be well defined")
ntk <- nrow(ptk)
ptk <- rbind(ptk, ptk[ntk,])
ptk$time[ntk+1] <- tau
res[k,] <- apply(diff(ptk$time)*ptk[1:ntk,1+(1:K)], 2, sum)
}
rownames(res) <- paste("from", 1:K, sep="")
colnames(res) <- paste("in", 1:K, sep="")
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.