Nothing
#' Landmark Aalen-Johansen method
#'
#' This function implements the landmark Aalen-Johansen method of Putter &
#' Spitoni (2016) for non-parametric estimation of transition probabilities in
#' non-Markov models.
#'
#'
#' @param msdata An \code{"msdata"} object, as for instance prepared by
#' \code{link{msprep}}
#' @param s The prediction time point s from which transition probabilities are
#' to be obtained
#' @param from Either a single state or a set of states in the state space
#' 1,...,S
#' @param method The method for calculating variances, as in
#' \code{\link{probtrans}}
#' @return A data frame containing estimates and associated standard errors of
#' the transition probabilities P(X(t)=k | X(s) in \code{from}) with \code{s}
#' and \code{from} the arguments of the function.
#' @author Hein Putter \email{H.Putter@@lumc.nl}
#' @author Edouard F. Bonneville \email{e.f.bonneville@@lumc.nl}
#' @references H. Putter and C. Spitoni (2016). Estimators of transition
#' probabilities in non-Markov multi-state models. Submitted.
#' @keywords survival
#' @examples
#'
#' data(prothr)
#' tmat <- attr(prothr, "trans")
#' pr0 <- subset(prothr, treat=="Placebo")
#' attr(pr0, "trans") <- tmat
#' pr1 <- subset(prothr, treat=="Prednisone")
#' attr(pr1, "trans") <- tmat
#' c0 <- coxph(Surv(Tstart, Tstop, status) ~ strata(trans), data=pr0)
#' c1 <- coxph(Surv(Tstart, Tstop, status) ~ strata(trans), data=pr1)
#' msf0 <- msfit(c0, trans=tmat)
#' msf1 <- msfit(c1, trans=tmat)
#' # Comparison as in Figure 2 of Titman (2015)
#' # Aalen-Johansen
#' pt0 <- probtrans(msf0, predt=1000)[[2]]
#' pt1 <- probtrans(msf1, predt=1000)[[2]]
#' par(mfrow=c(1,2))
#' plot(pt0$time, pt0$pstate1, type="s", lwd=2, xlim=c(1000,4000), ylim=c(0,0.61),
#' xlab="Time since randomisation (days)", ylab="Probability")
#' lines(pt1$time, pt1$pstate1, type="s", lwd=2, lty=3)
#' legend("topright", c("Placebo", "Prednisone"), lwd=2, lty=1:2, bty="n")
#' title(main="Aalen-Johansen")
#' # Landmark Aalen-Johansen
#' LMpt0 <- LMAJ(msdata=pr0, s=1000, from=2)
#' LMpt1 <- LMAJ(msdata=pr1, s=1000, from=2)
#' plot(LMpt0$time, LMpt0$pstate1, type="s", lwd=2, xlim=c(1000,4000), ylim=c(0,0.61),
#' xlab="Time since randomisation (days)", ylab="Probability")
#' lines(LMpt1$time, LMpt1$pstate1, type="s", lwd=2, lty=3)
#' legend("topright", c("Placebo", "Prednisone"), lwd=2, lty=1:2, bty="n")
#' title(main="Landmark Aalen-Johansen")
#'
#' @export LMAJ
LMAJ <- function(msdata, s, from, method=c("aalen", "greenwood"))
{
tmat <- attr(msdata, "trans")
if (is.null(tmat)) stop("msdata object should have a \"trans\" attribute")
K <- nrow(tmat)
if (any(is.na(match(from, 1:K)))) stop("from should be subset of 1:K with K number of states")
xss <- xsect(msdata, s)
infrom <- xss$id[xss$state %in% from]
if (length(infrom) == 0) {
msdata_from <- msdata[msdata$from == from, ]
if (nrow(msdata_from) == 0) {
stop(paste0("No transitions are made from state ", from, "!"))
} else {
first_entering <- round(min(msdata_from$Tstart), 4)
stop_mssg <- paste0(
"At landmark time s = ", s,
", no individual has yet made it into state ",
from, ". The first individual enters at t = ", first_entering, "."
)
stop(stop_mssg)
}
}
msdatas <- cutLMms(msdata, LM=s)
msdatasfrom <- msdatas[msdatas$id %in% infrom, ]
msdatasfrom$trans <- factor(msdatasfrom$trans) # Feed to coxph factor (for easier matching)
c0 <- coxph(Surv(Tstart, Tstop, status) ~ strata(trans), data=msdatasfrom)
msf0 <- msfit(c0, trans=tmat)
# Check if only subset of transitions left
cond_subset_trans <- length(levels(msdatasfrom$trans)) < length(unique(msdata$trans))
if (cond_subset_trans) {
# Prepare original levels and re-coded ones
recoded_levels <- levels(factor(as.numeric(msdatasfrom$trans)))
orig_levels <- as.numeric(c0$xlevels$`strata(trans)`)
# Match in the msf0 object accordingly
msf0$Haz$trans <- orig_levels[match(as.character(msf0$Haz$trans), recoded_levels)]
msf0$varHaz$trans1 <- orig_levels[match(as.character(msf0$varHaz$trans1), recoded_levels)]
msf0$varHaz$trans2 <- orig_levels[match(as.character(msf0$varHaz$trans2), recoded_levels)]
}
# The warning is just for not being able to calculate variance at landmark time,
# see probtrans.R, line 172
pt0 <- probtrans(msf0, predt=s, method=method)[from]
if (length(from) == 1)
return(pt0[[1]])
else {
xsss <- xss[xss$state %in% from, ]
xsss$state <- factor(xsss$state, levels=from)
tbl <- table(xsss$state)
p <- tbl / sum(tbl)
varp <- (diag(p) - p %*% t(p)) / sum(tbl)
# Relying on fact that all items from list have exactly the same size and structure
# and that the sum of p equals 1; sorry for the double for-loop
res <- tmp1 <- tmp2 <- 0
for (j in 1:length(from)) {
ptj <- pt0[[j]]
res <- res + p[j] * ptj[, 1 + (1:K)]
tmp2 <- tmp2 + p[j] * (1 - p[j]) * (ptj[, K+1 + (1:K)])^2
for (k in 1:length(from)) {
ptk <- pt0[[k]]
tmp1 <- tmp1 + varp[j,k] * ptj[, 1 + (1:K)] * ptk[, 1 + (1:K)]
}
}
ses <- sqrt(tmp1 + tmp2)
# take ptj as template and insert estimates and SE's
pt <- ptj
pt[, 1 + (1:K)] <- res
pt[, K+1 + (1:K)] <- ses
return(pt)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.