Nothing
# Adjust for exposure misclassification
# the following functions feed into adjust_em():
# adjust_em_val() (data_validation input),
# adjust_em_coef() (bias_params input)
adjust_em_val <- function(
data_observed,
data_validation) {
if (!all(data_observed$confounders %in% data_validation$confounders)) {
stop(
"All confounders in observed data must be present in validation data.",
call. = FALSE
)
}
if (is.null(data_validation$misclassified_exposure)) {
stop(
paste0(
"Attempting to adjust for a misclassified exposure.",
"\n",
"Validation data must have a true and misclassified exposure specified."
),
call. = FALSE
)
}
n <- nrow(data_observed$data)
df <- data.frame(
Xstar = data_observed$data[, data_observed$exposure],
Y = data_observed$data[, data_observed$outcome]
)
df <- bind_cols(
df,
data_observed$data %>%
select(all_of(data_observed$confounders))
)
if (all(df$Y %in% 0:1)) {
y_binary <- TRUE
} else {
y_binary <- FALSE
}
df_val <- data.frame(
X = data_validation$data[, data_validation$true_exposure],
Y = data_validation$data[, data_validation$true_outcome],
Xstar = data_validation$data[, data_validation$misclassified_exposure]
)
df_val <- bind_cols(
df_val,
data_validation$data %>%
select(all_of(data_validation$confounders))
)
force_match(
df$Y,
df_val$Y,
"Outcomes from both datasets must both be binary or both be continuous."
)
force_binary(
df$Xstar,
"Exposure in observed data must be a binary integer."
)
force_binary(
df_val$Xstar,
"Misclassified exposure in validation data must be a binary integer."
)
force_binary(
df_val$X,
"True exposure in validation data must be a binary integer."
)
x_mod <- glm(X ~ Xstar + Y + .,
family = binomial(link = "logit"),
data = df_val
)
x_mod_coefs <- coef(x_mod)
x_pred <- x_mod_coefs[1]
for (i in 2:length(x_mod_coefs)) {
var_name <- names(x_mod_coefs)[i]
x_pred <- x_pred + df[[var_name]] * x_mod_coefs[i]
}
df$Xpred <- rbinom(n, 1, plogis(x_pred))
if (y_binary) {
final <- glm(
Y ~ Xpred + . - Xstar,
family = binomial(link = "logit"),
data = df
)
} else {
final <- lm(
Y ~ Xpred + . - Xstar,
data = df
)
}
return(final)
}
adjust_em_coef <- function(
data_observed,
x_model_coefs) {
data <- data_observed$data
n <- nrow(data)
confounders <- data_observed$confounders
len_c <- length(confounders)
len_x_coefs <- length(x_model_coefs)
xstar <- data[, data_observed$exposure]
y <- data[, data_observed$outcome]
force_binary(xstar, "Exposure must be a binary integer.")
force_len(
len_x_coefs,
3 + len_c,
paste0(
"Incorrect length of X model coefficients. ",
"Length should equal 3 + number of confounders."
)
)
if (all(y %in% 0:1)) {
y_binary <- TRUE
} else {
y_binary <- FALSE
}
x1_0 <- x_model_coefs[1]
x1_xstar <- x_model_coefs[2]
x1_y <- x_model_coefs[3]
if (is.null(confounders)) {
df <- data.frame(Xstar = xstar, Y = y)
df$Xpred <- rbinom(n, 1, plogis(x1_0 + x1_xstar * df$Xstar + x1_y * df$Y))
if (y_binary) {
final <- glm(
Y ~ Xpred,
family = binomial(link = "logit"),
data = df
)
} else {
final <- lm(
Y ~ Xpred,
data = df
)
}
} else if (len_c == 1) {
c1 <- data[, confounders]
df <- data.frame(Xstar = xstar, Y = y, C1 = c1)
x1_c1 <- x_model_coefs[4]
df$Xpred <- rbinom(
n, 1, plogis(
x1_0 + x1_xstar * df$Xstar +
x1_y * df$Y + x1_c1 * df$C1
)
)
if (y_binary) {
final <- glm(
Y ~ Xpred + C1,
family = binomial(link = "logit"),
data = df
)
} else {
final <- lm(
Y ~ Xpred + C1,
data = df
)
}
} else if (len_c == 2) {
c1 <- data[, confounders[1]]
c2 <- data[, confounders[2]]
df <- data.frame(Xstar = xstar, Y = y, C1 = c1, C2 = c2)
x1_c1 <- x_model_coefs[4]
x1_c2 <- x_model_coefs[5]
df$Xpred <- rbinom(
n, 1, plogis(
x1_0 + x1_xstar * df$Xstar + x1_y * df$Y +
x1_c1 * df$C1 + x1_c2 * df$C2
)
)
if (y_binary) {
final <- glm(
Y ~ Xpred + C1 + C2,
family = binomial(link = "logit"),
data = df
)
} else {
final <- lm(
Y ~ Xpred + C1 + C2,
data = df
)
}
} else if (len_c == 3) {
c1 <- data[, confounders[1]]
c2 <- data[, confounders[2]]
c3 <- data[, confounders[3]]
df <- data.frame(Xstar = xstar, Y = y, C1 = c1, C2 = c2, C3 = c3)
x1_c1 <- x_model_coefs[4]
x1_c2 <- x_model_coefs[5]
x1_c3 <- x_model_coefs[6]
df$Xpred <- rbinom(
n, 1,
plogis(
x1_0 + x1_xstar * df$Xstar + x1_y * df$Y +
x1_c1 * df$C1 + x1_c2 * df$C2 + x1_c3 * df$C3
)
)
if (y_binary) {
final <- glm(
Y ~ Xpred + C1 + C2 + C3,
family = binomial(link = "logit"),
data = df
)
} else {
final <- lm(
Y ~ Xpred + C1 + C2 + C3,
data = df
)
}
} else if (len_c > 3) {
stop(
"This function is currently not compatible with >3 confounders.",
call. = FALSE
)
}
return(final)
}
adjust_em <- function(
data_observed,
data_validation = NULL,
bias_params = NULL,
level = 0.95) {
if (
(!is.null(data_validation) && !is.null(bias_params)) ||
(is.null(data_validation) && is.null(bias_params))
) {
stop(
"One of data_validation or bias_params must be non-null.",
call. = FALSE
)
}
data <- data_observed$data
xstar <- data[, data_observed$exposure]
y <- data[, data_observed$outcome]
if (all(y %in% 0:1)) {
y_binary <- TRUE
} else {
y_binary <- FALSE
}
if (!is.null(data_validation)) {
final <- adjust_em_val(
data_observed,
data_validation
)
} else if (!is.null(bias_params)) {
if (is.null(bias_params$coef_list$x)) {
stop(
"bias_params must specify parameters for x to adjust for exposure misclassification",
call. = FALSE
)
}
final <- adjust_em_coef(
data_observed,
x_model_coefs = bias_params$coef_list$x
)
}
est <- summary(final)$coef[2, 1]
se <- summary(final)$coef[2, 2]
alpha <- 1 - level
if (y_binary) {
estimate <- exp(est)
ci <- c(
exp(est + se * qnorm(alpha / 2)),
exp(est + se * qnorm(1 - alpha / 2))
)
} else {
estimate <- est
ci <- c(
est + se * qnorm(alpha / 2),
est + se * qnorm(1 - alpha / 2)
)
}
return(list(estimate = estimate, ci = ci))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.