Nothing
# Adjust for outcome misclassification and selection bias
# the following functions feed into adjust_om_sel():
# adjust_om_sel_val() (data_validation input),
# adjust_om_sel_coef() (bias_params input)
adjust_om_sel_val <- function(
data_observed,
data_validation) {
if (!all(data_observed$confounders %in% data_validation$confounders)) {
stop(
"All confounders in observed data must be present in validation data.",
call. = FALSE
)
}
if (
is.null(data_validation$misclassified_outcome) ||
is.null(data_validation$selection)
) {
stop(
paste0(
"This function is adjusting for a misclassified outcome and selection bias.",
"\n",
"Validation data must have: 1) a true and misclassified outcome specified, 2) a selection indicator column specified."
),
call. = FALSE
)
}
n <- nrow(data_observed$data)
df <- data.frame(
X = data_observed$data[, data_observed$exposure],
Ystar = data_observed$data[, data_observed$outcome]
)
df <- bind_cols(
df,
data_observed$data %>%
select(all_of(data_observed$confounders))
)
df_val <- data.frame(
X = data_validation$data[, data_validation$true_exposure],
Y = data_validation$data[, data_validation$true_outcome],
Ystar = data_validation$data[, data_validation$misclassified_outcome],
S = data_validation$data[, data_validation$selection]
)
df_val <- bind_cols(
df_val,
data_validation$data %>%
select(all_of(data_validation$confounders))
)
force_match(
df$X,
df_val$X,
"Exposures from both datasets must both be binary or both be continuous."
)
force_binary(
df$Ystar,
"Outcome in observed data must be a binary integer."
)
force_binary(
df_val$Ystar,
"Misclassified outcome in validation data must be a binary integer."
)
force_binary(
df_val$Y,
"True outcome in validation data must be a binary integer."
)
force_binary(
df_val$S,
"Selection indicator in validation data must be a binary integer."
)
y_mod <- glm(Y ~ X + Ystar + . - S,
family = binomial(link = "logit"),
data = df_val
)
y_mod_coefs <- coef(y_mod)
y_pred <- y_mod_coefs[1]
for (i in 2:length(y_mod_coefs)) {
var_name <- names(y_mod_coefs)[i]
y_pred <- y_pred + df[[var_name]] * y_mod_coefs[i]
}
df$Ypred <- rbinom(n, 1, plogis(y_pred))
s_mod <- glm(S ~ X + Ystar + . - Y,
family = binomial(link = "logit"),
data = df_val
)
s_mod_coefs <- coef(s_mod)
s_pred <- s_mod_coefs[1]
for (i in 2:length(s_mod_coefs)) {
var_name <- names(s_mod_coefs)[i]
s_pred <- s_pred + df[[var_name]] * s_mod_coefs[i]
}
df$Spred <- plogis(s_pred)
suppressWarnings({
final <- glm(
Ypred ~ X + . - Ystar - Spred,
family = binomial(link = "logit"),
weights = (1 / df$Spred),
data = df
)
})
return(final)
}
adjust_om_sel_coef <- function(
data_observed,
y_model_coefs,
s_model_coefs) {
data <- data_observed$data
n <- nrow(data)
confounders <- data_observed$confounders
len_c <- length(confounders)
len_y_coefs <- length(y_model_coefs)
len_s_coefs <- length(s_model_coefs)
x <- data[, data_observed$exposure]
ystar <- data[, data_observed$outcome]
force_binary(ystar, "Outcome must be a binary integer.")
force_len(
len_y_coefs,
3 + len_c,
paste0(
"Incorrect length of Y model coefficients. ",
"Length should equal 3 + number of confounders."
)
)
force_len(
len_s_coefs,
3 + len_c,
paste0(
"Incorrect length of S model coefficients. ",
"Length should equal 3 + number of confounders."
)
)
s1_0 <- s_model_coefs[1]
s1_x <- s_model_coefs[2]
s1_ystar <- s_model_coefs[3]
y1_0 <- y_model_coefs[1]
y1_x <- y_model_coefs[2]
y1_ystar <- y_model_coefs[3]
if (is.null(confounders)) {
df <- data.frame(X = x, Ystar = ystar)
y1_pred <- plogis(y1_0 + y1_x * x + y1_ystar * ystar)
y1_pred <- rep(y1_pred, times = 2)
combined <- bind_rows(df, df) %>%
mutate(
Ybar = rep(c(1, 0), each = n),
pS = plogis(s1_0 + s1_x * .data$X + s1_ystar * .data$Ystar),
pY = case_when(
Ybar == 1 ~ y1_pred,
Ybar == 0 ~ 1 - y1_pred
)
)
suppressWarnings({
final <- glm(
Ybar ~ X,
family = binomial(link = "logit"),
weights = (combined$pY / combined$pS),
data = combined
)
})
} else if (len_c == 1) {
c1 <- data[, confounders]
df <- data.frame(X = x, Ystar = ystar, C1 = c1)
y1_c1 <- y_model_coefs[4]
s1_c1 <- s_model_coefs[4]
y1_pred <- plogis(y1_0 + y1_x * x + y1_ystar * ystar + y1_c1 * c1)
y1_pred <- rep(y1_pred, times = 2)
combined <- bind_rows(df, df) %>%
mutate(
Ybar = rep(c(1, 0), each = n),
pS = plogis(
s1_0 + s1_x * .data$X + s1_ystar * .data$Ystar +
s1_c1 * .data$C1
),
pY = case_when(
Ybar == 1 ~ y1_pred,
Ybar == 0 ~ 1 - y1_pred
)
)
suppressWarnings({
final <- glm(
Ybar ~ X + C1,
family = binomial(link = "logit"),
weights = (combined$pY / combined$pS),
data = combined
)
})
} else if (len_c == 2) {
c1 <- data[, confounders[1]]
c2 <- data[, confounders[2]]
df <- data.frame(X = x, Ystar = ystar, C1 = c1, C2 = c2)
s1_c1 <- s_model_coefs[4]
s1_c2 <- s_model_coefs[5]
y1_c1 <- y_model_coefs[4]
y1_c2 <- y_model_coefs[5]
y1_pred <- plogis(
y1_0 + y1_x * x +
y1_ystar * ystar + y1_c1 * c1 + y1_c2 * c2
)
y1_pred <- rep(y1_pred, times = 2)
combined <- bind_rows(df, df) %>%
mutate(
Ybar = rep(c(1, 0), each = n),
pS = plogis(
s1_0 + s1_x * .data$X + s1_ystar * .data$Ystar +
s1_c1 * .data$C1 + s1_c2 * .data$C2
),
pY = case_when(
Ybar == 1 ~ y1_pred,
Ybar == 0 ~ 1 - y1_pred
)
)
suppressWarnings({
final <- glm(
Ybar ~ X + C1 + C2,
family = binomial(link = "logit"),
weights = (combined$pY / combined$pS),
data = combined
)
})
} else if (len_c == 3) {
c1 <- data[, confounders[1]]
c2 <- data[, confounders[2]]
c3 <- data[, confounders[3]]
df <- data.frame(X = x, Ystar = ystar, C1 = c1, C2 = c2, C3 = c3)
s1_c1 <- s_model_coefs[4]
s1_c2 <- s_model_coefs[5]
s1_c3 <- s_model_coefs[6]
y1_c1 <- y_model_coefs[4]
y1_c2 <- y_model_coefs[5]
y1_c3 <- y_model_coefs[6]
y1_pred <- plogis(
y1_0 + y1_x * x + y1_ystar * ystar + y1_c1 * c1 + y1_c2 * c2 + y1_c3 * c3
)
y1_pred <- rep(y1_pred, times = 2)
combined <- bind_rows(df, df) %>%
mutate(
Ybar = rep(c(1, 0), each = n),
pS = plogis(
s1_0 + s1_x * .data$X + s1_ystar * .data$Ystar +
s1_c1 * .data$C1 + s1_c2 * .data$C2 + s1_c3 * .data$C3
),
pY = case_when(
Ybar == 1 ~ y1_pred,
Ybar == 0 ~ 1 - y1_pred
)
)
suppressWarnings({
final <- glm(
Ybar ~ X + C1 + C2 + C3,
family = binomial(link = "logit"),
weights = (combined$pY / combined$pS),
data = combined
)
})
} else if (len_c > 3) {
stop(
"This function is currently not compatible with >3 confounders.",
call. = FALSE
)
}
return(final)
}
adjust_om_sel <- function(
data_observed,
data_validation = NULL,
bias_params = NULL,
level = 0.95) {
if (
(!is.null(data_validation) && !is.null(bias_params)) ||
(is.null(data_validation) && is.null(bias_params))
) {
stop(
"One of data_validation or bias_params must be non-null.",
call. = FALSE
)
}
if (!is.null(data_validation)) {
final <- adjust_om_sel_val(
data_observed,
data_validation
)
} else if (!is.null(bias_params)) {
if (is.null(bias_params$coef_list$y) && is.null(bias_params$coef_list$s)) {
stop(
paste0(
"bias_params must specify parameters for outcome ",
"misclassification and selection bias"
),
call. = FALSE
)
}
final <- adjust_om_sel_coef(
data_observed,
bias_params$coef_list$y,
bias_params$coef_list$s
)
}
est <- summary(final)$coef[2, 1]
se <- summary(final)$coef[2, 2]
alpha <- 1 - level
estimate <- exp(est)
ci <- c(
exp(est + se * qnorm(alpha / 2)),
exp(est + se * qnorm(1 - alpha / 2))
)
return(list(estimate = estimate, ci = ci))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.