Nothing
set.seed(1234)
n <- 20000
nreps <- 10
# cont X just for testing that function runs
df_om$X_cont <- plogis(df_om$X) + rnorm(nrow(df_om), mean = 0, sd = 0.1)
# 0 confounders
nobias_model <- glm(
Y ~ X,
family = binomial(link = "logit"),
data = df_om_source
)
y_model <- glm(
Y ~ X + Ystar,
family = binomial(link = "logit"),
data = df_om_source
)
df_observed <- data_observed(
df_om,
bias = "om",
exposure = "X_cont",
outcome = "Ystar",
confounders = NULL
)
list_for_om <- list(y = as.vector(coef(y_model)))
bp_om <- bias_params(coef_list = list_for_om)
single_run <- adjust_om(
df_observed,
bias_params = bp_om
)
est <- vector()
for (i in 1:nreps) {
bdf <- df_om[sample(seq_len(n), n, replace = TRUE), ]
df_observed <- data_observed(
bdf,
bias = "om",
exposure = "X",
outcome = "Ystar",
confounders = NULL
)
results <- adjust_om(
df_observed,
bias_params = bp_om
)
est[i] <- results$estimate
}
or_true <- exp(summary(nobias_model)$coef[2, 1])
or_adjusted <- median(est)
test_that("odds ratio and confidence interval output", {
expect_gt(or_adjusted, or_true - 0.1)
expect_lt(or_adjusted, or_true + 0.1)
expect_vector(
single_run$ci,
ptype = double(),
size = 2
)
})
# 3 confounders
nobias_model <- glm(Y ~ X + C1 + C2 + C3,
family = binomial(link = "logit"),
data = df_om_source
)
y_model <- glm(Y ~ X + Ystar + C1 + C2 + C3,
family = binomial(link = "logit"),
data = df_om_source
)
df_observed <- data_observed(
df_om,
bias = "om",
exposure = "X_cont",
outcome = "Ystar",
confounders = c("C1", "C2", "C3")
)
list_for_om <- list(y = as.vector(coef(y_model)))
bp_om <- bias_params(coef_list = list_for_om)
single_run <- adjust_om(
df_observed,
bias_params = bp_om
)
est <- vector()
for (i in 1:nreps) {
bdf <- df_om[sample(seq_len(n), n, replace = TRUE), ]
df_observed <- data_observed(
bdf,
bias = "om",
exposure = "X",
outcome = "Ystar",
confounders = c("C1", "C2", "C3")
)
results <- adjust_om(
df_observed,
bias_params = bp_om
)
est[i] <- results$estimate
}
or_true <- exp(summary(nobias_model)$coef[2, 1])
or_adjusted <- median(est)
test_that("odds ratio and confidence interval output", {
expect_gt(or_adjusted, or_true - 0.1)
expect_lt(or_adjusted, or_true + 0.1)
expect_vector(
single_run$ci,
ptype = double(),
size = 2
)
})
# adjust with validation data
or_val <- adjust_om(
data_observed = data_observed(
df_om,
bias = "om",
exposure = "X",
outcome = "Ystar",
confounders = c("C1", "C2", "C3")
),
data_validation = data_validation(
df_om_source,
true_exposure = "X",
true_outcome = "Y",
confounders = c("C1", "C2", "C3"),
misclassified_outcome = "Ystar"
)
)
test_that("adjust_om, validation data", {
expect_gt(or_val$estimate, or_true - 0.1)
expect_lt(or_val$estimate, or_true + 0.1)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.