Nothing
set.seed(1234)
n <- 10000
nreps <- 10
# SEPARATE BIAS PARAMETERS
# cont X just for testing that function runs
df_uc_om_sel$X_cont <- plogis(df_uc_om_sel$X) +
rnorm(nrow(df_uc_om_sel), mean = 0, sd = 0.1)
# 0 confounders
nobias_model <- glm(
Y ~ X + U,
family = binomial(link = "logit"),
data = df_uc_om_sel_source
)
u_model <- glm(
U ~ X + Y,
family = binomial(link = "logit"),
data = df_uc_om_sel_source
)
y_model <- glm(
Y ~ X + Ystar,
family = binomial(link = "logit"),
data = df_uc_om_sel_source
)
s_model <- glm(
S ~ X + Ystar,
family = binomial(link = "logit"),
data = df_uc_om_sel_source
)
df_observed <- data_observed(
df_uc_om_sel,
bias = c("uc", "om", "sel"),
exposure = "X_cont",
outcome = "Ystar",
confounders = NULL
)
list_for_uc_om_sel <- list(
u = as.vector(coef(u_model)),
y = as.vector(coef(y_model)),
s = as.vector(coef(s_model))
)
bp_uc_om_sel <- bias_params(coef_list = list_for_uc_om_sel)
single_run <- adjust_uc_om_sel(
df_observed,
bias_params = bp_uc_om_sel
)
est <- vector()
for (i in 1:nreps) {
bdf <- df_uc_om_sel[sample(seq_len(n), n, replace = TRUE), ]
df_observed <- data_observed(
bdf,
bias = c("uc", "om", "sel"),
exposure = "X",
outcome = "Ystar",
confounders = NULL
)
results <- adjust_uc_om_sel(
df_observed,
bias_params = bp_uc_om_sel
)
est[i] <- results$estimate
}
or_true <- exp(summary(nobias_model)$coef[2, 1])
or_adjusted <- median(est)
test_that("0 confounders: odds ratio and confidence interval output", {
expect_gt(or_adjusted, or_true - 0.1)
expect_lt(or_adjusted, or_true + 0.1)
expect_vector(
single_run$ci,
ptype = double(),
size = 2
)
})
# 3 confounders
nobias_model <- glm(
Y ~ X + C1 + C2 + C3 + U,
family = binomial(link = "logit"),
data = df_uc_om_sel_source
)
u_model <- glm(
U ~ X + Y,
family = binomial(link = "logit"),
data = df_uc_om_sel_source
)
y_model <- glm(
Y ~ X + Ystar + C1 + C2 + C3,
family = binomial(link = "logit"),
data = df_uc_om_sel_source
)
s_model <- glm(
S ~ X + Ystar + C1 + C2 + C3,
family = binomial(link = "logit"),
data = df_uc_om_sel_source
)
df_observed <- data_observed(
df_uc_om_sel,
bias = c("uc", "om", "sel"),
exposure = "X_cont",
outcome = "Ystar",
confounders = c("C1", "C2", "C3")
)
list_for_uc_om_sel <- list(
u = as.vector(coef(u_model)),
y = as.vector(coef(y_model)),
s = as.vector(coef(s_model))
)
bp_uc_om_sel <- bias_params(coef_list = list_for_uc_om_sel)
single_run <- adjust_uc_om_sel(
df_observed,
bias_params = bp_uc_om_sel
)
est <- vector()
for (i in 1:nreps) {
bdf <- df_uc_om_sel[sample(seq_len(n), n, replace = TRUE), ]
df_observed <- data_observed(
bdf,
bias = c("uc", "om", "sel"),
exposure = "X",
outcome = "Ystar",
confounders = c("C1", "C2", "C3")
)
results <- adjust_uc_om_sel(
df_observed,
bias_params = bp_uc_om_sel
)
est[i] <- results$estimate
}
or_true <- exp(summary(nobias_model)$coef[2, 1])
or_adjusted <- median(est)
test_that("3 confounders: odds ratio and confidence interval output", {
expect_gt(or_adjusted, or_true - 0.1)
expect_lt(or_adjusted, or_true + 0.1)
expect_vector(
single_run$ci,
ptype = double(),
size = 2
)
})
# MULTINOMIAL BIAS PARAMETERS
# library(nnet)
set.seed(1234)
n <- 10000
nreps <- 10
# cont X just for testing that function runs
df_uc_om_sel$X_cont <- plogis(df_uc_om_sel$X) +
rnorm(nrow(df_uc_om_sel), mean = 0, sd = 0.1)
# 0 confounders
nobias_model <- glm(
Y ~ X + U,
family = binomial(link = "logit"),
data = df_uc_om_sel_source
)
# uy_model <- multinom(
# paste(U, Y) ~ X + Ystar,
# data = df_uc_om_sel_source
# )
s_model <- glm(
S ~ X + Ystar,
family = binomial(link = "logit"),
data = df_uc_om_sel_source
)
df_observed <- data_observed(
df_uc_om_sel,
bias = c("uc", "om", "sel"),
exposure = "X",
outcome = "Ystar",
confounders = NULL
)
list_for_uc_om_sel <- list(
u1y0 = c(-0.32, 0.59, 0.01),
u0y1 = c(-2.98, 0.71, 1.65),
u1y1 = c(-2.59, 1.27, 1.64),
s = as.vector(coef(s_model))
)
bp_uc_om_sel <- bias_params(coef_list = list_for_uc_om_sel)
single_run <- adjust_uc_om_sel(
df_observed,
bias_params = bp_uc_om_sel
)
est <- vector()
for (i in 1:nreps) {
bdf <- df_uc_om_sel[sample(seq_len(n), n, replace = TRUE), ]
df_observed <- data_observed(
bdf,
bias = c("uc", "om", "sel"),
exposure = "X",
outcome = "Ystar",
confounders = NULL
)
results <- adjust_uc_om_sel(
df_observed,
bias_params = bp_uc_om_sel
)
est[i] <- results$estimate
}
or_true <- exp(summary(nobias_model)$coef[2, 1])
or_adjusted <- median(est)
test_that("0 confounders: odds ratio and confidence interval output", {
expect_gt(or_adjusted, or_true - 0.1)
expect_lt(or_adjusted, or_true + 0.1)
expect_vector(
single_run$ci,
ptype = double(),
size = 2
)
})
# 3 confounders
nobias_model <- glm(
Y ~ X + C1 + C2 + C3 + U,
family = binomial(link = "logit"),
data = df_uc_om_sel_source
)
# uy_model <- multinom(
# paste(U, Y) ~ X + Ystar + C1 + C2 + C3,
# data = df_uc_om_sel_source
# )
s_model <- glm(
S ~ X + Ystar + C1 + C2 + C3,
family = binomial(link = "logit"),
data = df_uc_om_sel_source
)
df_observed <- data_observed(
df_uc_om_sel,
bias = c("uc", "om", "sel"),
exposure = "X",
outcome = "Ystar",
confounders = c("C1", "C2", "C3")
)
list_for_uc_om_sel <- list(
u1y0 = c(-0.20, 0.62, 0.01, -0.08, 0.10, -0.15),
u0y1 = c(-3.28, 0.63, 1.65, 0.42, -0.85, 0.26),
u1y1 = c(-2.70, 1.22, 1.64, 0.32, -0.77, 0.09),
s = as.vector(coef(s_model))
)
bp_uc_om_sel <- bias_params(coef_list = list_for_uc_om_sel)
single_run <- adjust_uc_om_sel(
df_observed,
bias_params = bp_uc_om_sel
)
est <- vector()
for (i in 1:nreps) {
bdf <- df_uc_om_sel[sample(seq_len(n), n, replace = TRUE), ]
df_observed <- data_observed(
bdf,
bias = c("uc", "om", "sel"),
exposure = "X",
outcome = "Ystar",
confounders = c("C1", "C2", "C3")
)
results <- adjust_uc_om_sel(
df_observed,
bias_params = bp_uc_om_sel
)
est[i] <- results$estimate
}
or_true <- exp(summary(nobias_model)$coef[2, 1])
or_adjusted <- median(est)
test_that("3 confounders: odds ratio and confidence interval output", {
expect_gt(or_adjusted, or_true - 0.1)
expect_lt(or_adjusted, or_true + 0.1)
expect_vector(
single_run$ci,
ptype = double(),
size = 2
)
})
# adjust with validation data
or_val <- adjust_uc_om_sel(
data_observed = data_observed(
df_uc_om_sel,
bias = c("uc", "om", "sel"),
exposure = "X",
outcome = "Ystar",
confounders = c("C1", "C2", "C3")
),
data_validation = data_validation(
df_uc_om_sel_source,
true_exposure = "X",
true_outcome = "Y",
confounders = c("C1", "C2", "C3", "U"),
misclassified_outcome = "Ystar",
selection = "S"
)
)
test_that("adjust_uc_om_sel, validation data", {
expect_gt(or_val$estimate, or_true - 0.1)
expect_lt(or_val$estimate, or_true + 0.1)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.