Description Usage Arguments Details Author(s) Examples
This function is implemented in the unique function for univariate statistical analysis 'univariate'. This function reports final p-values foe each pairwise caomparison of sample groups, by merging the p-values from Welch's T test for normally distributed variables with p-values from Wilcoxon-Mann Whitney U test for not-normally distributed variables.
1 |
file |
a connection or a character string giving the name of the file containing the variables |
mtc |
logical, default is 'TRUE'. Perform multiple testing correction with Banjamini-Hochberg method. |
A directory called 'Pvalues' is automatically generated in the directory 'Univariate' in the working directory. A report with merged p-values from each test is written.
Edoardo Gaude, Dimitrios Spiliotopoulos, Francesca Chignola, Silvia Mari, Andrea Spitaleri and Michela Ghitti
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | ## The function is currently defined as
function (file, mtc)
{
pwdfile = paste(getwd(), "/Univariate/DataTable.csv", sep = "")
file = pwdfile
x <- read.csv(file, sep = ",", header = TRUE)
x.x = x[, 3:ncol(x)]
rownames(x.x) = x[, 2]
k = matrix(x[, 1], ncol = 1)
x.n = cbind(k, x.x)
sorted = x.n[order(x.n[, 1]), ]
sorted.x = sorted[, -1]
g = c()
for (i in 1:nrow(sorted)) {
if (any(g == sorted[i, 1])) {
g = g
}
else {
g = matrix(c(g, sorted[i, 1]), ncol = 1)
}
}
NoF = nrow(g)
dirout.pv = paste(getwd(), "/Univariate/Pvalues/", sep = "")
dir.create(dirout.pv)
dirout.sign = paste(getwd(), "/Univariate/Significant_Variables/",
sep = "")
dir.create(dirout.sign)
for (i in 1:NoF) {
for (j in 1:NoF) {
if (i < j) {
shapi = paste("ShapiroTest.", i, ".csv", sep = "")
shapj = paste("ShapiroTest.", j, ".csv", sep = "")
shap.pwdi = paste(getwd(), "/Univariate/Shapiro_Tests/",
shapi, sep = "")
shap.pwdj = paste(getwd(), "/Univariate/Shapiro_Tests/",
shapj, sep = "")
Si = read.csv(shap.pwdi, header = TRUE)
Sj = read.csv(shap.pwdj, header = TRUE)
Si = matrix(Si[, -1], ncol = 1)
Sj = matrix(Sj[, -1], ncol = 1)
welchij = paste("WelchTest_", i, "vs", j, ".csv",
sep = "")
welch.pwdij = paste(getwd(), "/Univariate/WelchTest/",
welchij, sep = "")
Wij = read.csv(welch.pwdij, header = TRUE)
Wij = matrix(Wij[, -1], ncol = 1)
wmwp = paste("WMWTest_pvalues_", i, "vs", j,
".csv", sep = "")
wmw.pwd = paste(getwd(), "/Univariate/Mann-Whitney_Tests/",
wmwp, sep = "")
WMWp = read.csv(wmw.pwd, header = TRUE)
WMWp = matrix(WMWp[, -1], ncol = 1)
fin = ncol(sorted) - 1
pvalues = matrix(rep(1, fin))
for (q in 1:fin) {
if (Si[q, ] > 0.05 & Sj[q, ] > 0.05) {
pvalues[q, ] <- Wij[q, ]
}
else {
pvalues[q, ] <- WMWp[q, ]
}
}
if (mtc) {
pval.corr = matrix(p.adjust(pvalues, method = c("BH"),
n = nrow(pvalues)), ncol = 1)
rownames(pval.corr) = colnames(x.x)
pvalfin = paste("Pvalues_", i, "vs", j, ".csv",
sep = "")
assign(pvalfin, pval.corr)
write.csv(pval.corr, paste(dirout.pv, pvalfin,
sep = ""))
sign = c()
for (q in 1:fin) {
if (pval.corr[q, ] < 0.05) {
sign = matrix(c(sign, colnames(sorted.x)[q]))
}
}
signnam = paste("Significant_Variables_", i,
"vs", j, ".csv", sep = "")
assign(signnam, sign)
write.csv(sign, paste(dirout.sign, signnam,
sep = ""), row.names = FALSE)
}
else {
rownames(pvalues) = colnames(x.x)
pvalfin = paste("Pvalues_", i, "vs", j, ".csv",
sep = "")
assign(pvalfin, pvalues)
write.csv(pvalues, paste(dirout.pv, pvalfin,
sep = ""))
sign = c()
for (q in 1:fin) {
if (pvalues[q, ] < 0.05) {
sign = matrix(c(sign, colnames(sorted.x)[q]))
}
}
signnam = paste("Significant_Variables_", i,
"vs", j, ".csv", sep = "")
assign(signnam, sign)
write.csv(sign, paste(dirout.sign, signnam,
sep = ""), row.names = FALSE)
}
}
}
}
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.