Description Usage Arguments Details Author(s) Examples
Performs normalization and scaling of metabolomics data, providing an overview of the dataset through principal component analysis and automatic outlier testing; it also contains a test for chosing the best-separating principal components
1 | explore.data(file, scaling, scal = TRUE, normalize = TRUE, imputation = FALSE, imput)
|
file |
a connection or a character string giving the name of the file to preprocess and explore |
scaling |
the type of scaling to be used (see Details) |
scal |
logical, whether to perform or not scaling. Default is 'TRUE'. See details. |
normalize |
logical, whether to perform or not normalization. Default is 'TRUE'. |
imputation |
logical, whether to perform or not imputation of missing values. Default is 'FALSE'. |
imput |
character vector indicating the type of value with which missing values should be imputed. See details for the different options. |
The 'file' provided has to be a matrix in .csv form, formatted with the first column indicating the name of the samples and the second column indicating the class of belonging of each samples (e.g. treatment groups, healthy/diseased, ...). The header of the matrix must contain the name of each variable in the dataset.
Before performing data preprocessing the function 'explore.data' scans the dataset to find negative values and substitutes them with 0 values. As a result, a table reporting the negative values and a table with corrected values are generated and written in the directory 'Preprocessing_Data'.
There for options for imputing missing values: "mean", "minimum", "half.minimum", "zero". For specifying the type of imput to be used, the field 'imputation' must be turned to 'TRUE'.
A normalization is automatically performed on total intensity, i.e. the sum of all variables for each sample is calculated and used as normalizing factor for each variable. A table reporting normalized valued is generated and written in the directory 'Preprocessing_Data'.
Different types of 'scaling' can be performed. 'pareto', 'Pareto', 'p' or 'P' can be used for specifying the Pareto scaling. 'auto', 'Auto', 'auto', 'a' or 'A' can be used for specifying the Auto scaling (or unit variance scaling). 'vast', 'Vast', 'v' or 'V' can be used for specifying the vast scaling. 'range', 'Range', 'r' or 'R' can be used for specifying the Range scaling. A table reporting the scaled values is generated and written in the directory 'Preprocessing_Data'. If the 'scal' is turned to 'FALSE', no scaling is performed, but only mean-centering.
Principal component analysis is automatically performed on scaled table and a plot reporting pairwise representation of the first ten principal components is graphically visualized and written in the directory 'PCA_Data'. A statistical test is performed for identifying the best-separating couple of principal components and a rank of the first three couples of components is printed. This can allow the user to chose the best set of principal components. Finally, a geometric test is performed for identifying potential outliers; the result of this test is printed.
Edoardo Gaude, Dimitrios Spiliotopoulos, Francesca Chignola, Silvia Mari, Andrea Spitaleri and Michela Ghitti
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 | ## The function is currently defined as
function (file, scaling, scal = TRUE, normalize = TRUE, imputation = FALSE,
imput)
{
comp = read.csv(file, sep = ",", header = TRUE)
comp.x = comp[, 3:ncol(comp)]
comp.x = cbind(comp[, 2], comp[, 1], comp.x)
x <- comp.x
x.x <- x[, 3:ncol(x)]
rownames(x.x) <- x[, 2]
if (!scal) {
scaling = ""
}
dirout = paste(getwd(), "/Preprocessing_Data_", scaling,
"/", sep = "")
dir.create(dirout)
if (imputation) {
y = x.x
r = is.na(y)
for (k in 1:ncol(r)) {
vec = matrix(r[, k], ncol = 1)
who.miss.rows = which(apply(vec, 1, function(i) {
any(i)
}))
if (length(who.miss.rows) > nrow(y) * 0.8) {
warning(paste("The variable -", colnames(y)[k],
"- has a number of missing values > 80%, therefore has been eliminated",
sep = " "))
y = y[, -k]
}
}
r = is.na(y)
who.miss.columns = c()
for (i in 1:nrow(y)) {
for (j in 1:ncol(y)) {
if (r[i, j] == TRUE) {
if (imput == "mean") {
v2 = matrix(r[, j], ncol = 1)
who.miss.rows = which(apply(v2, 1, function(i) {
any(i)
}))
y[i, j] = mean(y[-who.miss.rows, j])
print(paste("Imputing missing value of variable -",
colnames(y)[j], "- for the observation -",
rownames(y)[i], "- with", imput, "value",
sep = " "))
}
else if (imput == "minimum") {
v2 = matrix(r[, j], ncol = 1)
who.miss.rows = which(apply(v2, 1, function(i) {
any(i)
}))
y[i, j] = min(y[-who.miss.rows, j])
print(paste("Imputing missing value of variable -",
colnames(y)[j], "- for the observation -",
rownames(y)[i], "- with", imput, "value",
sep = " "))
}
else if (imput == "half.minimum") {
v2 = matrix(r[, j], ncol = 1)
who.miss.rows = which(apply(v2, 1, function(i) {
any(i)
}))
y[i, j] = min(y[-who.miss.rows, j])/2
print(paste("Imputing missing value of variable -",
colnames(y)[j], "- for the observation -",
rownames(y)[i], "- with", imput, "value",
sep = " "))
}
else if (imput == "zero") {
v2 = matrix(r[, j], ncol = 1)
who.miss.rows = which(apply(v2, 1, function(i) {
any(i)
}))
y[i, j] = 0
print(paste("Imputing missing value of variable -",
colnames(y)[j], "- for the observation -",
rownames(y)[i], "- with", imput, "value",
sep = " "))
}
}
}
}
pwdi = paste(getwd(), "/Preprocessing_Data_", scaling,
"/ImputedMatrix.csv", sep = "")
write.csv(y, pwdi)
x.x = y
}
for (i in 1:nrow(x.x)) {
for (j in 1:ncol(x.x)) {
if (x.x[i, j] <= 0) {
x.x[i, j] = runif(1, 0, 1e-10)
}
}
}
x.x = cbind(comp[, 2], x.x)
write.csv(x.x, paste(dirout, "CorrectedTable.csv", sep = ""))
pwd.c = paste(getwd(), "/Preprocessing_Data_", scaling, "/CorrectedTable.csv",
sep = "")
x <- read.csv(pwd.c, sep = ",", header = TRUE)
x.x <- x[, 3:ncol(x)]
rownames(x.x) <- x[, 1]
k = matrix(x[, 2], ncol = 1)
if (normalize) {
x.t <- t(x.x)
x.s <- matrix(colSums(x.t), nrow = 1)
uni = matrix(rep(1, nrow(x.t)), ncol = 1)
area.uni <- uni %*% x.s
x.areanorm <- x.t/area.uni
x.areanorm = t(x.areanorm)
write.csv(x.areanorm, paste(dirout, "/ProcessedTable.csv",
sep = ""))
}
else {
write.csv(x.x, paste(dirout, "/ProcessedTable.csv", sep = ""))
}
if (scal) {
if (scaling == "Pareto" | scaling == "pareto" | scaling ==
"P" | scaling == "p") {
pwd.n = paste(getwd(), "/Preprocessing_Data_", scaling,
"/ProcessedTable.csv", sep = "")
x <- read.csv(pwd.n, sep = ",", header = TRUE)
x.x <- x[, 2:ncol(x)]
rownames(x.x) <- x[, 1]
x.areanorm.tc <- scale(x.x, center = TRUE, scale = FALSE)
all.sd <- matrix(apply(x.areanorm.tc, 2, sd), nrow = 1)
uni.exp.all = matrix(rep(1, nrow(x.areanorm.tc)),
ncol = 1)
all.sdm = uni.exp.all %*% all.sd
all.sqsd = sqrt(all.sdm)
all.pareto <- x.areanorm.tc/all.sqsd
write.csv(all.pareto, paste(dirout, "/ProcessedTable.csv",
sep = ""))
}
else if (scaling == "Auto" | scaling == "auto" | scaling ==
"A" | scaling == "a") {
pwd.n = paste(getwd(), "/Preprocessing_Data_", scaling,
"/ProcessedTable.csv", sep = "")
x <- read.csv(pwd.n, sep = ",", header = TRUE)
x.x <- x[, 2:ncol(x)]
rownames(x.x) <- x[, 1]
x.areanorm.tc <- scale(x.x, center = TRUE, scale = FALSE)
all.sd <- matrix(apply(x.areanorm.tc, 2, sd), nrow = 1)
uni.exp.all = matrix(rep(1, nrow(x.areanorm.tc)),
ncol = 1)
all.sdm = uni.exp.all %*% all.sd
all.auto <- x.areanorm.tc/all.sdm
write.csv(all.auto, paste(dirout, "/ProcessedTable.csv",
sep = ""))
}
else if (scaling == "Vast" | scaling == "vast" | scaling ==
"V" | scaling == "v") {
pwd.n = paste(getwd(), "/Preprocessing_Data_", scaling,
"/ProcessedTable.csv", sep = "")
x <- read.csv(pwd.n, sep = ",", header = TRUE)
x.x <- x[, 2:ncol(x)]
rownames(x.x) <- x[, 1]
x.areanorm.tc <- scale(x.x, center = TRUE, scale = FALSE)
all.sd <- matrix(apply(x.areanorm.tc, 2, sd), nrow = 1)
uni.exp.all = matrix(rep(1, nrow(x.areanorm.tc)),
ncol = 1)
all.sdm = uni.exp.all %*% all.sd
sdm2 = all.sdm^2
colm = matrix(colMeans(x.x), nrow = 1)
colm.m = uni.exp.all %*% colm
num = x.areanorm.tc * colm.m
vast = num/sdm2
write.csv(vast, paste(dirout, "/ProcessedTable.csv",
sep = ""))
}
else if (scaling == "Range" | scaling == "range" | scaling ==
"R" | scaling == "r") {
pwd.n = paste(getwd(), "/Preprocessing_Data_", scaling,
"/ProcessedTable.csv", sep = "")
x <- read.csv(pwd.n, sep = ",", header = TRUE)
x.x <- x[, 2:ncol(x)]
rownames(x.x) <- x[, 1]
x.areanorm.tc <- scale(x.x, center = TRUE, scale = FALSE)
range = c()
for (i in 1:ncol(x.x)) {
den = c()
den = max(x.x[, i]) - min(x.x[, i])
range = matrix(c(range, den), nrow = 1)
}
uni.exp.all = matrix(rep(1, nrow(x.areanorm.tc)),
ncol = 1)
range.m = uni.exp.all %*% range
all.range = x.areanorm.tc/range.m
write.csv(all.range, paste(dirout, "/ProcessedTable.csv",
sep = ""))
}
else if (scaling == "Median" | scaling == "median" |
scaling == "M" | scaling == "m") {
pwd.n = paste(getwd(), "/Preprocessing_Data_", scaling,
"/ProcessedTable.csv", sep = "")
x <- read.csv(pwd.n, sep = ",", header = TRUE)
x.x <- x[, 2:ncol(x)]
rownames(x.x) <- x[, 1]
x.areanorm.tc <- scale(x.x, center = TRUE, scale = FALSE)
all.med <- matrix(apply(x.areanorm.tc, 2, median),
nrow = 1)
uni.exp.all = matrix(rep(1, nrow(x.areanorm.tc)),
ncol = 1)
all.sdm = uni.exp.all %*% all.med
all.med <- x.areanorm.tc/all.sdm
write.csv(all.med, paste(dirout, "/ProcessedTable.csv",
sep = ""))
}
}
else {
pwd.n = paste(getwd(), "/Preprocessing_Data_", scaling,
"/ProcessedTable.csv", sep = "")
x <- read.csv(pwd.n, sep = ",", header = TRUE)
x.x <- x[, 2:ncol(x)]
rownames(x.x) <- x[, 1]
x.c = scale(x.x, scale = FALSE)
write.csv(x.c, paste(dirout, "/ProcessedTable.csv", sep = ""))
}
pwd.scal = paste(getwd(), "/Preprocessing_Data_", scaling,
"/ProcessedTable.csv", sep = "")
x <- read.csv(pwd.scal, sep = ",", header = TRUE)
x.x <- x[, 2:ncol(x)]
rownames(x.x) <- x[, 1]
pc.all <- prcomp(x.x, center = FALSE, scale = FALSE)
p.v <- matrix(((pc.all$sdev^2)/(sum(pc.all$sdev^2))), ncol = 1)
p.i <- round(p.v * 100, 1)
p.z <- matrix(1, nrow(p.i), 1)
p.f <- cbind(p.i, p.z)
dirout.pca = paste(getwd(), "/PCA_Data_", scaling, "/", sep = "")
dir.create(dirout.pca)
write.csv(p.f, paste(dirout.pca, "PCA_P", sep = ""))
write.csv(pc.all$x, paste(dirout.pca, "PCA_ScoreMatrix.csv",
sep = ""))
write.csv(pc.all$rotation, paste(dirout.pca, "PCA_LoadingsMatrix.csv",
sep = ""))
pwd.score = paste(getwd(), "/PCA_Data_", scaling, "/", "PCA_ScoreMatrix.csv",
sep = "")
Score <- read.csv(pwd.score, sep = ",", header = TRUE)
Score.x <- Score[, 2:ncol(Score)]
rownames(Score.x) <- Score[, 1]
pwd.load = paste(getwd(), "/PCA_Data_", scaling, "/", "PCA_LoadingsMatrix.csv",
sep = "")
Loading <- read.csv(pwd.load, sep = ",", header = TRUE)
Loading.x <- Loading[, 2:ncol(Loading)]
rownames(Loading.x) <- Loading[, 1]
pwd.pvar = paste(getwd(), "/PCA_Data_", scaling, "/", "PCA_P",
sep = "")
Pvar <- read.csv(pwd.pvar, sep = ",", header = TRUE)
Pvar.x <- Pvar[, 2:ncol(Pvar)]
rownames(Pvar.x) <- Pvar[, 1]
barplot(Pvar.x[, 1], xlab = "Principal Components", ylab = "Proportion of Variance explained",
main = "Screeplot", ylim = c(0, 100))
scree = paste(dirout.pca, "Screeplot", scaling, ".pdf", sep = "")
dev.copy2pdf(file = scree)
tutticolors = matrix(c(1, 2, 3, 4, 5, 6, 7, 8, "rosybrown4",
"green4", "navy", "purple2", "orange", "pink", "chocolate2",
"coral3", "khaki3", "thistle", "turquoise3", "palegreen1",
"moccasin", "olivedrab3", "azure4", "gold3", "deeppink"),
ncol = 1)
col = c()
for (i in 1:nrow(k)) {
col = c(col, tutticolors[k[i, ], ])
}
pairs = c()
if (ncol(Score.x) >= 10) {
pairs = c(10)
}
else {
pairs = c(ncol(Score.x))
}
pairs(Score.x[, 1:pairs], col = col)
dev.new()
pairs = paste(dirout.pca, "First_10_Components_", scaling,
".pdf", sep = "")
dev.copy2pdf(file = pairs)
K = paste(getwd(), "/Preprocessing_Data_", scaling, "/class.csv",
sep = "")
write.csv(k, K)
x.nn = cbind(k, pc.all$x)
sorted = x.nn[order(x.nn[, 1]), ]
g = c()
for (i in 1:nrow(sorted)) {
if (any(g == sorted[i, 1])) {
g = g
}
else {
g = matrix(c(g, sorted[i, 1]), ncol = 1)
}
}
dirout.g = paste(getwd(), "/Groups", sep = "")
dir.create(dirout.g)
for (i in 1:nrow(g)) {
vuota <- c()
fin = matrix(rep(NA, ncol(sorted)), nrow = 1)
for (j in 1:nrow(sorted)) {
if (sorted[j, 1] == i) {
vuota <- matrix(sorted[j, ], nrow = 1)
rownames(vuota) = rownames(sorted)[j]
fin = rbind(fin, vuota)
}
}
nam = paste("r", i, sep = ".")
n = matrix(fin[-1, ], ncol = ncol(sorted))
n.x = matrix(n[, -1], ncol = ncol(sorted) - 1)
name = as.matrix(assign(nam, n.x))
outputfileg = paste("r.", i, ".csv", sep = "")
write.csv(name, paste(dirout.g, outputfileg, sep = "/"),
row.names = FALSE)
}
all.F = c()
NoF = nrow(g)
for (i in 1:NoF) {
for (j in 1:NoF) {
if (i < j) {
ni = paste("r.", i, ".csv", sep = "")
nj = paste("r.", j, ".csv", sep = "")
pwdi = paste(getwd(), "/Groups/", ni, sep = "")
pwdj = paste(getwd(), "/Groups/", nj, sep = "")
I = read.csv(pwdi, header = TRUE)
J = read.csv(pwdj, header = TRUE)
fin = ncol(I) - 1
library(rrcov)
ntest = factorial(fin)/(2 * (factorial(fin -
2)))
T2 = c()
nam = c()
for (k in 1:fin) {
for (l in 1:fin) {
if (k < l) {
Ikl = cbind(I[, k], I[, l])
Jkl = cbind(J[, k], J[, l])
t1 = matrix(T2.test(Ikl, Jkl)$statistic,
ncol = 2)
t2 = c(t1[, 1])
T2 = matrix(c(T2, t2), ncol = 1)
rownam = paste("PC", k, "vsPC", l, sep = "")
nam = matrix(c(nam, rownam), ncol = 1)
}
}
}
pair = paste("T2statistic_", i, "vs", j, sep = "")
rownames(T2) = nam
colnames(T2)[1] = pair
num = nrow(I) + nrow(J) - 3
den = 2 * (nrow(I) + nrow(J) - 2)
coeff = num/den
Fval = T2 * coeff
Fvalname = paste("F_statistic_", i, "vs", j,
sep = "")
colnames(Fval)[1] = Fvalname
Fpval = pf(Fval, 2, num)
Fname = paste("F_pvalue_", i, "vs", j, sep = "")
colnames(Fpval)[1] = Fname
Fpvalfin = 1 - Fpval
all.F = matrix(c(all.F, Fpvalfin))
}
}
}
varp = c()
for (k in 1:fin) {
for (l in 1:fin) {
if (k < l) {
varp = matrix(c(varp, p.f[k, 1] + p.f[l, 1]),
ncol = 1)
}
}
}
ncomparison = factorial(nrow(g))/(2 * (factorial(nrow(g) -
2)))
all.F = matrix(all.F, ncol = ncomparison)
rownames(all.F) = nam
allFpwd = paste(getwd(), "/PCA_Data_", scaling, "/PCs_Fstatistic.csv",
sep = "")
write.csv(all.F, allFpwd, row.names = FALSE)
sum = matrix(rowSums(all.F), ncol = 1)
all = data.frame(nam, sum, varp)
colnames(all)[3] = "Variance(%)"
colnames(all)[2] = "Sum_p_values"
colnames(all)[1] = "Pair_of_PCs"
ord.sum = all[order(all[, 2]), ]
colnames(ord.sum)[3] = "Variance(%)"
colnames(ord.sum)[2] = "Sum_p_values(F_statistics)"
colnames(ord.sum)[1] = "Pair_of_PCs"
rownames(ord.sum) = 1:nrow(ord.sum)
rankFpwd = paste(getwd(), "/PCA_Data_", scaling, "/PCs_ranked_Fpvalue.csv",
sep = "")
write.csv(ord.sum, rankFpwd, row.names = FALSE)
print("Pairs of Principal Components giving highest statistical cluster separation are:")
print(ord.sum[1:5, ])
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.