R/denton.R

Defines functions denton

Documented in denton

#' Relative Clustering based on Massey & Denton (1988)
#' 
#' Compute the aspatial Relative Clustering (Massey & Denton) of a selected racial or ethnic subgroup(s) and U.S. geographies.
#'
#' @param geo_large Character string specifying the larger geographical unit of the data. The default is counties \code{geo_large = 'county'}.
#' @param geo_small Character string specifying the smaller geographical unit of the data. The default is census tracts \code{geo_small = 'tract'}.
#' @param year Numeric. The year to compute the estimate. The default is 2020, and the years 2009 onward are currently available.
#' @param subgroup Character string specifying the racial or ethnic subgroup(s) as the comparison population. See Details for available choices.
#' @param subgroup_ref Character string specifying the racial or ethnic subgroup(s) as the reference population. See Details for available choices.
#' @param crs Numeric or character string specifying the coordinate reference system to compute the distance-based metric. The default is Albers North America \code{crs = 'ESRI:102008'}.
#' @param omit_NAs Logical. If FALSE, will compute index for a larger geographical unit only if all of its smaller geographical units have values. The default is TRUE.
#' @param quiet Logical. If TRUE, will display messages about potential missing census information. The default is FALSE.
#' @param ... Arguments passed to \code{\link[tidycensus]{get_acs}} to select state, county, and other arguments for census characteristics
#'
#' @details This function will compute the aspatial Relative Clustering (\emph{RCL}) of selected racial or ethnic subgroups and U.S. geographies for a specified geographical extent (e.g., the entire U.S. or a single state) based on Massey & Denton (1988) \doi{10.1093/sf/67.2.281}. This function provides the computation of \emph{RCL} for any of the U.S. Census Bureau race or ethnicity subgroups (including Hispanic and non-Hispanic individuals).
#' 
#' The function uses the \code{\link[tidycensus]{get_acs}} function to obtain U.S. Census Bureau 5-year American Community Survey characteristics used for the computation. The yearly estimates are available for 2009 onward when ACS-5 data are available (2010 onward for \code{geo_large = 'cbsa'} and 2011 onward for \code{geo_large = 'place'}, \code{geo_large = 'csa'}, or \code{geo_large = 'metro'}) but may be available from other U.S. Census Bureau surveys. The twenty racial or ethnic subgroups (U.S. Census Bureau definitions) are:
#' \itemize{
#'  \item \strong{B03002_002}: not Hispanic or Latino \code{'NHoL'}
#'  \item \strong{B03002_003}: not Hispanic or Latino, white alone \code{'NHoLW'}
#'  \item \strong{B03002_004}: not Hispanic or Latino, Black or African American alone \code{'NHoLB'}
#'  \item \strong{B03002_005}: not Hispanic or Latino, American Indian and Alaska Native alone \code{'NHoLAIAN'}
#'  \item \strong{B03002_006}: not Hispanic or Latino, Asian alone \code{'NHoLA'}
#'  \item \strong{B03002_007}: not Hispanic or Latino, Native Hawaiian and Other Pacific Islander alone \code{'NHoLNHOPI'}
#'  \item \strong{B03002_008}: not Hispanic or Latino, Some other race alone \code{'NHoLSOR'}
#'  \item \strong{B03002_009}: not Hispanic or Latino, Two or more races \code{'NHoLTOMR'}
#'  \item \strong{B03002_010}: not Hispanic or Latino, Two races including Some other race \code{'NHoLTRiSOR'}
#'  \item \strong{B03002_011}: not Hispanic or Latino, Two races excluding Some other race, and three or more races \code{'NHoLTReSOR'}
#'  \item \strong{B03002_012}: Hispanic or Latino \code{'HoL'}
#'  \item \strong{B03002_013}: Hispanic or Latino, white alone \code{'HoLW'}
#'  \item \strong{B03002_014}: Hispanic or Latino, Black or African American alone \code{'HoLB'}
#'  \item \strong{B03002_015}: Hispanic or Latino, American Indian and Alaska Native alone \code{'HoLAIAN'}
#'  \item \strong{B03002_016}: Hispanic or Latino, Asian alone \code{'HoLA'}
#'  \item \strong{B03002_017}: Hispanic or Latino, Native Hawaiian and Other Pacific Islander alone \code{'HoLNHOPI'}
#'  \item \strong{B03002_018}: Hispanic or Latino, Some other race alone \code{'HoLSOR'}
#'  \item \strong{B03002_019}: Hispanic or Latino, Two or more races \code{'HoLTOMR'}
#'  \item \strong{B03002_020}: Hispanic or Latino, Two races including Some other race \code{'HoLTRiSOR'}
#'  \item \strong{B03002_021}: Hispanic or Latino, Two races excluding Some other race, and three or more races \code{'HoLTReSOR'}
#' }
#'
#' Use the internal \code{state} and \code{county} arguments within the \code{\link[tidycensus]{get_acs}} function to specify geographic extent of the data output.
#'
#' \emph{RCL} is a measure of clustering of racial or ethnic populations within smaller geographical units that are located within larger geographical units. \emph{RCL} can range in value from -Inf to Inf and represents the degree to which an area is a racial or ethnic enclave. *RCL* equals 0 when the racial or ethnic subgroup population displays the same amount of clustering as the referent racial or ethnic subgroup population, and is positive whenever the racial or ethnic subgroup population members display greater clustering than is typical of the the referent racial or ethnic subgroup population. If the racial or ethnic subgroup population members were less clustered than the the referent racial or ethnic subgroup population, then *RCL* would be negative.
#' 
#' The metric uses the exponential transform of a distance matrix (kilometers) between smaller geographical area centroids, with a diagonal defined as \code{(0.6*a_{i})^{0.5}} where \code{a_{i}} is the area (square kilometers) of smaller geographical unit \code{i} as defined by White (1983) \doi{10.1086/227768}.
#'
#' Larger geographical units available include states \code{geo_large = 'state'}, counties \code{geo_large = 'county'}, census tracts \code{geo_large = 'tract'}, census-designated places \code{geo_large = 'place'}, core-based statistical areas \code{geo_large = 'cbsa'}, combined statistical areas \code{geo_large = 'csa'}, and metropolitan divisions \code{geo_large = 'metro'}. Smaller geographical units available include, counties \code{geo_small = 'county'}, census tracts \code{geo_small = 'tract'}, and census block groups \code{geo_small = 'cbg'}. If a larger geographical unit is comprised of only one smaller geographical unit (e.g., a U.S county contains only one census tract), then the \emph{RCL} value returned is NA. If the larger geographical unit is census-designated places \code{geo_large = 'place'}, core-based statistical areas \code{geo_large = 'cbsa'}, combined statistical areas \code{geo_large = 'csa'}, or metropolitan divisions \code{geo_large = 'metro'}, only the smaller geographical units completely within a larger geographical unit are considered in the \emph{V} computation (see internal \code{\link[sf]{st_within}} function for more information) and recommend specifying all states within which the interested larger geographical unit are located using the internal \code{state} argument to ensure all appropriate smaller geographical units are included in the \emph{RCL} computation.
#' 
#' @return An object of class 'list'. This is a named list with the following components:
#'
#' \describe{
#' \item{\code{rcl}}{An object of class 'tbl' for the GEOID, name, and \emph{RCL} at specified larger census geographies.}
#' \item{\code{rcl_data}}{An object of class 'tbl' for the raw census values at specified smaller census geographies.}
#' \item{\code{missing}}{An object of class 'tbl' of the count and proportion of missingness for each census variable used to compute \emph{RCL}.}
#' }
#'
#' @seealso \code{\link[tidycensus]{get_acs}} for additional arguments for geographic extent selection (i.e., \code{state} and \code{county}).
#' @seealso Absolute Clustering: \code{\link{massey}}
#' @seealso Proximity measures: \code{\link{morgan_massey}}, \code{\link{morgan_denton}}, \code{\link{white_blau}}
#' 
#' @references Massey, DS, & Denton, NA (1988) The Dimensions of Residential Segregation. \emph{Social Forces}, 67(1):281-315. \doi{10.1093/sf/67.2.281}
#' 
#' @import dplyr
#' @importFrom sf st_centroid st_distance st_drop_geometry st_transform st_within
#' @importFrom stats complete.cases
#' @importFrom stringr str_trim
#' @importFrom tidycensus get_acs
#' @importFrom tidyr pivot_longer separate
#' @importFrom tigris combined_statistical_areas core_based_statistical_areas metro_divisions places
#' @importFrom units drop_units set_units
#' @importFrom utils stack
#' @export
#'
#' @examples
#' \dontrun{
#' # Wrapped in \dontrun{} because these examples require a Census API key.
#'
#'   # Relative Clustering (a measure of clustering)
#'   ## of non-Hispanic Black vs. non-Hispanic white populations
#'   ## in census tracts within counties of Georgia, U.S.A. (2020)
#'   denton(
#'     geo_large = 'county',
#'     geo_small = 'tract',
#'     state = 'GA',
#'     year = 2020,
#'     subgroup = 'NHoLB',
#'     subgroup_ref = 'NHoLW'
#'    )
#'
#' }
#'
denton <- function(geo_large = 'county',
                   geo_small = 'tract',
                   year = 2020,
                   subgroup,
                   subgroup_ref,
                   crs = 'ESRI:102008',
                   omit_NAs = TRUE,
                   quiet = FALSE,
                   ...) {
  
  # Check arguments
  match.arg(geo_large, choices = c('state', 'county', 'tract', 'place', 'cbsa', 'csa', 'metro'))
  match.arg(geo_small, choices = c('county', 'tract', 'cbg', 'block group'))
  stopifnot(is.numeric(year), year >= 2009) # all variables available 2009 onward
  match.arg(
    subgroup,
    several.ok = TRUE,
    choices = c(
      'NHoL',
      'NHoLW',
      'NHoLB',
      'NHoLAIAN',
      'NHoLA',
      'NHoLNHOPI',
      'NHoLSOR',
      'NHoLTOMR',
      'NHoLTRiSOR',
      'NHoLTReSOR',
      'HoL',
      'HoLW',
      'HoLB',
      'HoLAIAN',
      'HoLA',
      'HoLNHOPI',
      'HoLSOR',
      'HoLTOMR',
      'HoLTRiSOR',
      'HoLTReSOR'
    )
  )
  match.arg(
    subgroup_ref,
    several.ok = TRUE,
    choices = c(
      'NHoL',
      'NHoLW',
      'NHoLB',
      'NHoLAIAN',
      'NHoLA',
      'NHoLNHOPI',
      'NHoLSOR',
      'NHoLTOMR',
      'NHoLTRiSOR',
      'NHoLTReSOR',
      'HoL',
      'HoLW',
      'HoLB',
      'HoLAIAN',
      'HoLA',
      'HoLNHOPI',
      'HoLSOR',
      'HoLTOMR',
      'HoLTRiSOR',
      'HoLTReSOR'
    )
  )
  
  # Select census variables
  vars <- c(
    TotalPop = 'B03002_001',
    NHoL = 'B03002_002',
    NHoLW = 'B03002_003',
    NHoLB = 'B03002_004',
    NHoLAIAN = 'B03002_005',
    NHoLA = 'B03002_006',
    NHoLNHOPI = 'B03002_007',
    NHoLSOR = 'B03002_008',
    NHoLTOMR = 'B03002_009',
    NHoLTRiSOR = 'B03002_010',
    NHoLTReSOR = 'B03002_011',
    HoL = 'B03002_012',
    HoLW = 'B03002_013',
    HoLB = 'B03002_014',
    HoLAIAN = 'B03002_015',
    HoLA = 'B03002_016',
    HoLNHOPI = 'B03002_017',
    HoLSOR = 'B03002_018',
    HoLTOMR = 'B03002_019',
    HoLTRiSOR = 'B03002_020',
    HoLTReSOR = 'B03002_021'
  )
  
  selected_vars <- vars[c('TotalPop', subgroup, subgroup_ref)]
  out_names <- c(names(selected_vars), 'ALAND') # save for output
  in_subgroup <- paste0(subgroup, 'E')
  in_subgroup_ref <- paste0(subgroup_ref, 'E')
  
  # Acquire RCL variables and sf geometries
  out_dat <- suppressMessages(suppressWarnings(
    tidycensus::get_acs(
      geography = geo_small,
      year = year,
      output = 'wide',
      variables = selected_vars,
      geometry = TRUE,
      keep_geo_vars = TRUE,
      ...
    )
  ))
  
  # Format output
  if (geo_small == 'county') {
    out_dat <- out_dat %>%
      tidyr::separate(NAME.y, into = c('county', 'state'), sep = ',')
  }
  if (geo_small == 'tract') {
    out_dat <- out_dat %>%
      tidyr::separate(NAME.y, into = c('tract', 'county', 'state'), sep = ',') %>%
      dplyr::mutate(tract = gsub('[^0-9\\.]', '', tract))
  }
  if (geo_small == 'cbg' | geo_small == 'block group') {
    out_dat <- out_dat %>%
      tidyr::separate(NAME.y, into = c('cbg', 'tract', 'county', 'state'), sep = ',') %>%
      dplyr::mutate(
        tract = gsub('[^0-9\\.]', '', tract),
        cbg = gsub('[^0-9\\.]', '', cbg)
      )
  }
  
  # Grouping IDs for RCL computation
  if (geo_large == 'state') {
    out_dat <- out_dat %>%
      dplyr::mutate(
        oid = STATEFP,
        state = stringr::str_trim(state)
      )
  }
  if (geo_large == 'tract') {
    out_dat <- out_dat %>%
      dplyr::mutate(
        oid = paste0(STATEFP, COUNTYFP, TRACTCE),
        state = stringr::str_trim(state),
        county = stringr::str_trim(county)
      )
  }
  if (geo_large == 'county') {
    out_dat <- out_dat %>%
      dplyr::mutate(
        oid = paste0(STATEFP, COUNTYFP),
        state = stringr::str_trim(state),
        county = stringr::str_trim(county)
      )
  }
  if (geo_large == 'place') {
    stopifnot(is.numeric(year), year >= 2011) # Places only available 2011 onward
    lgeom <- suppressMessages(suppressWarnings(tigris::places(
      year = year, state = unique(out_dat$state))
    ))
    wlgeom <- sf::st_within(out_dat, lgeom)
    out_dat <- out_dat %>%
      dplyr::mutate(
        oid = lapply(wlgeom, function(x) { 
          tmp <- lgeom[x, 4] %>% sf::st_drop_geometry()
          lapply(tmp, function(x) { if (length(x) == 0) NA else x })
        }) %>% 
          unlist(),
        place = lapply(wlgeom, function(x) { 
          tmp <- lgeom[x, 5] %>% sf::st_drop_geometry()
          lapply(tmp, function(x) { if (length(x) == 0) NA else x })
        }) %>% 
          unlist()
      )
  }
  if (geo_large == 'cbsa') {
    stopifnot(is.numeric(year), year >= 2010) # CBSAs only available 2010 onward
    lgeom <- suppressMessages(suppressWarnings(tigris::core_based_statistical_areas(year = year)))
    wlgeom <- sf::st_within(out_dat, lgeom)
    out_dat <- out_dat %>%
      dplyr::mutate(
        oid = lapply(wlgeom, function(x) { 
          tmp <- lgeom[x, 3] %>% sf::st_drop_geometry()
          lapply(tmp, function(x) { if (length(x) == 0) NA else x })
        }) %>% 
          unlist(),
        cbsa = lapply(wlgeom, function(x) { 
          tmp <- lgeom[x, 4] %>% sf::st_drop_geometry()
          lapply(tmp, function(x) { if (length(x) == 0) NA else x })
        }) %>% 
          unlist()
      )
  }
  if (geo_large == 'csa') {
    stopifnot(is.numeric(year), year >= 2011) # CSAs only available 2011 onward
    lgeom <- suppressMessages(suppressWarnings(tigris::combined_statistical_areas(year = year)))
    wlgeom <- sf::st_within(out_dat, lgeom)
    out_dat <- out_dat %>%
      dplyr::mutate(
        oid = lapply(wlgeom, function(x) { 
          tmp <- lgeom[x, 2] %>% sf::st_drop_geometry()
          lapply(tmp, function(x) { if (length(x) == 0) NA else x })
        }) %>% 
          unlist(),
        csa = lapply(wlgeom, function(x) { 
          tmp <- lgeom[x, 3] %>% sf::st_drop_geometry()
          lapply(tmp, function(x) { if (length(x) == 0) NA else x })
        }) %>% 
          unlist()
      )
  }
  if (geo_large == 'metro') {
    stopifnot(is.numeric(year), year >= 2011) # Metropolitan Divisions only available 2011 onward
    lgeom <- suppressMessages(suppressWarnings(tigris::metro_divisions(year = year)))
    wlgeom <- sf::st_within(out_dat, lgeom)
    out_dat <- out_dat %>%
      dplyr::mutate(
        oid = lapply(wlgeom, function(x) { 
          tmp <- lgeom[x, 4] %>% sf::st_drop_geometry()
          lapply(tmp, function(x) { if (length(x) == 0) NA else x })
        }) %>% 
          unlist(),
        metro = lapply(wlgeom, function(x) { 
          tmp <- lgeom[x, 5] %>% sf::st_drop_geometry()
          lapply(tmp, function(x) { if (length(x) == 0) NA else x })
        }) %>% 
          unlist()
      )
  }
  
  # Count of racial or ethnic subgroup populations
  ## Count of racial or ethnic comparison subgroup population
  if (length(in_subgroup) == 1) {
    out_dat <- out_dat %>%
      dplyr::mutate(subgroup = as.data.frame(.)[, in_subgroup])
  } else {
    out_dat <- out_dat %>%
      dplyr::mutate(subgroup = rowSums(as.data.frame(.)[, in_subgroup]))
  }
  ## Count of racial or ethnic reference subgroup population
  if (length(in_subgroup_ref) == 1) {
    out_dat <- out_dat %>%
      dplyr::mutate(subgroup_ref = as.data.frame(.)[, in_subgroup_ref])
  } else {
    out_dat <- out_dat %>%
      dplyr::mutate(subgroup_ref = rowSums(as.data.frame(.)[, in_subgroup_ref]))
  }
  
  # Compute RCL
  ## From Massey & Denton (1988) https://doi.org/10.1093/sf/67.2.281
  ## RCL = P_{xx}/P_{yy}-1
  ## Where for i & j smaller geographical units:
  ## P_{xx} = \frac{\sum_{i=1}^{n}\sum_{j=1}^{n}x_{i}x_{j}c_{ij}}{X^{2}}
  ## P_{yy} = \frac{\sum_{i=1}^{n}\sum_{j=1}^{n}y_{i}y_{j}c_{ij}}{Y^{2}}
  ## x_{i} denotes the racial or ethnic subgroup population of smaller geographical unit i
  ## X denotes the racial or ethnic subgroup population of a larger geographical unit
  ## y_{i} denotes the referent racial or ethnic subgroup population of smaller geographical unit i
  ## Y denotes the referent racial or ethnic subgroup population of a larger geographical unit
  ## c_{ij} denotes the distance function between smaller geographical units where
  ## c_{ij} = exp(-d_{ij})
  ## d_{ij} denotes the distance between smaller geographical unit centroids
  ## d_{ii} = 0.6(a_{i})^{0.05}
  ## a_{i} denotes the land area of smaller geographical unit i
  
  ## Compute
  out_tmp <- out_dat %>%
    .[.$oid != 'NANA', ] %>%
    split(., f = list(.$oid)) %>%
    lapply(., FUN = rcl_fun, crs = crs, omit_NAs = omit_NAs) %>%
    utils::stack(.) %>%
    dplyr::mutate(
      RCL = values,
      oid = ind
    ) %>%
    dplyr::select(RCL, oid) %>%
    sf::st_drop_geometry()
  
  # Warning for missingness of census characteristics
  missingYN <- out_dat[, c('TotalPopE', in_subgroup, in_subgroup_ref, 'ALAND')] %>% 
    sf::st_drop_geometry()
  names(missingYN) <- out_names
  missingYN <- missingYN %>%
    tidyr::pivot_longer(
      cols = dplyr::everything(),
      names_to = 'variable',
      values_to = 'val'
    ) %>%
    dplyr::group_by(variable) %>%
    dplyr::summarise(
      total = dplyr::n(),
      n_missing = sum(is.na(val)),
      percent_missing = paste0(round(mean(is.na(val)) * 100, 2), ' %')
    )
  
  if (quiet == FALSE) {
    # Warning for missing census data
    if (sum(missingYN$n_missing) > 0) {
      message('Warning: Missing census data')
    }
  }
  
  # Format output
  out <- out_dat %>%
    sf::st_drop_geometry() %>%
    dplyr::left_join(out_tmp, by = dplyr::join_by(oid))
  if (geo_large == 'state') {
    out <- out %>%
      dplyr::select(oid, state, RCL) %>%
      unique(.) %>%
      dplyr::mutate(GEOID = oid) %>%
      dplyr::select(GEOID, state, RCL)
  }
  if (geo_large == 'county') {
    out <- out %>%
      dplyr::select(oid, state, county, RCL) %>%
      unique(.) %>%
      dplyr::mutate(GEOID = oid) %>%
      dplyr::select(GEOID, state, county, RCL)
  }
  if (geo_large == 'tract') {
    out <- out %>%
      dplyr::select(oid, state, county, tract, RCL) %>%
      unique(.) %>%
      dplyr::mutate(GEOID = oid) %>%
      dplyr::select(GEOID, state, county, tract, RCL)
  }
  if (geo_large == 'place') {
    out <- out %>%
      dplyr::select(oid, place, RCL) %>%
      unique(.) %>%
      dplyr::mutate(GEOID = oid) %>%
      dplyr::select(GEOID, place, RCL)
  }
  if (geo_large == 'cbsa') {
    out <- out %>%
      dplyr::select(oid, cbsa, RCL) %>%
      unique(.) %>%
      dplyr::mutate(GEOID = oid) %>%
      dplyr::select(GEOID, cbsa, RCL)
  }
  if (geo_large == 'csa') {
    out <- out %>%
      dplyr::select(oid, csa, RCL) %>%
      unique(.) %>%
      dplyr::mutate(GEOID = oid) %>%
      dplyr::select(GEOID, csa, RCL)
  }
  if (geo_large == 'metro') {
    out <- out %>%
      dplyr::select(oid, metro, RCL) %>%
      unique(.) %>%
      dplyr::mutate(GEOID = oid) %>%
      dplyr::select(GEOID, metro, RCL)
  }
  
  out <- out %>%
    .[.$GEOID != 'NANA', ] %>%
    dplyr::filter(!is.na(GEOID)) %>%
    dplyr::distinct(GEOID, .keep_all = TRUE) %>%
    dplyr::arrange(GEOID) %>%
    dplyr::as_tibble()
  
  out_dat <- out_dat %>%
    dplyr::arrange(GEOID) %>%
    dplyr::as_tibble()
  
  out <- list(rcl = out, rcl_data = out_dat, missing = missingYN)
  
  return(out)
}

Try the ndi package in your browser

Any scripts or data that you put into this service are public.

ndi documentation built on Sept. 9, 2025, 5:26 p.m.