Nothing
nlmixrTest(
{
context("SAEM covariate parsing")
run1 <- function() {
ini({
tcl <- log(0.008) # typical value of clearance
tv <- log(0.6) # typical value of volume
all.cl <- 1 # allometric exponent on CL
eta.cl ~ 1
# interindividual variability on clearance and volume
add.err <- 0.1 # residual variability
})
model({
cl <- exp(tcl + all.cl * log_allo_wt + eta.cl) # individual value of clearance
v <- exp(tv) # individual value of volume
ke <- cl / v # elimination rate constant
d / dt(A1) <- -ke * A1 # model differential equation
cp <- A1 / v # concentration in plasma
cp ~ add(add.err) # define error model
})
}
run2 <- function() {
ini({
tcl <- log(0.008) # typical value of clearance
tv <- log(0.6) # typical value of volume
all.cl <- 1 # allometric exponent on CL
eta.cl ~ 1
# interindividual variability on clearance and volume
add.err <- 0.1 # residual variability
})
model({
cl <- exp(tcl + log_allo_wt * all.cl + eta.cl) # individual value of clearance
v <- exp(tv) # individual value of volume
ke <- cl / v # elimination rate constant
d / dt(A1) <- -ke * A1 # model differential equation
cp <- A1 / v # concentration in plasma
cp ~ add(add.err) # define error model
})
}
run3 <- function() {
ini({
tcl <- log(0.008) # typical value of clearance
tv <- log(0.6) # typical value of volume
all.cl <- 1 # allometric exponent on CL
eta.cl ~ 1
# interindividual variability on clearance and volume
add.err <- 0.1 # residual variability
})
model({
cl <- exp(tcl + eta.cl + log_allo_wt * all.cl) # individual value of clearance
v <- exp(tv) # individual value of volume
ke <- cl / v # elimination rate constant
d / dt(A1) <- -ke * A1 # model differential equation
cp <- A1 / v # concentration in plasma
cp ~ add(add.err) # define error model
})
}
run4 <- function() {
ini({
tcl <- log(0.008) # typical value of clearance
tv <- log(0.6) # typical value of volume
all.cl <- 1 # allometric exponent on CL
eta.cl ~ 1
# interindividual variability on clearance and volume
add.err <- 0.1 # residual variability
})
model({
cl <- exp(tcl + eta.cl + all.cl * log_allo_wt) # individual value of clearance
v <- exp(tv) # individual value of volume
ke <- cl / v # elimination rate constant
d / dt(A1) <- -ke * A1 # model differential equation
cp <- A1 / v # concentration in plasma
cp ~ add(add.err) # define error model
})
}
run5 <- function() {
ini({
tcl <- log(0.008) # typical value of clearance
tv <- log(0.6) # typical value of volume
all.cl <- 1 # allometric exponent on CL
eta.cl ~ 1
# interindividual variability on clearance and volume
add.err <- 0.1 # residual variability
})
model({
cl <- exp(all.cl * log_allo_wt + tcl + eta.cl) # individual value of clearance
v <- exp(tv) # individual value of volume
ke <- cl / v # elimination rate constant
d / dt(A1) <- -ke * A1 # model differential equation
cp <- A1 / v # concentration in plasma
cp ~ add(add.err) # define error model
})
}
run6 <- function() {
ini({
tcl <- log(0.008) # typical value of clearance
tv <- log(0.6) # typical value of volume
all.cl <- 1 # allometric exponent on CL
eta.cl ~ 1
# interindividual variability on clearance and volume
add.err <- 0.1 # residual variability
})
model({
cl <- exp(log_allo_wt * all.cl + tcl + eta.cl) # individual value of clearance
v <- exp(tv) # individual value of volume
ke <- cl / v # elimination rate constant
d / dt(A1) <- -ke * A1 # model differential equation
cp <- A1 / v # concentration in plasma
cp ~ add(add.err) # define error model
})
}
p <- list()
p[[1]] <- nlmixr(run1)
p[[2]] <- nlmixr(run2)
p[[3]] <- nlmixr(run3)
p[[4]] <- nlmixr(run4)
p[[5]] <- nlmixr(run5)
p[[6]] <- nlmixr(run6)
ref <- list(log_allo_wt = c(all.cl = "tcl"))
for (i in 1:6) {
test_that(sprintf("Parsing cl/log_allo_wt works correctly #%d", i), {
expect_equal(p[[1]]$cov.ref, ref)
})
}
run7 <- function() {
ini({
tcl <- log(0.008) # typical value of clearance
tv <- log(0.6) # typical value of volume
all.cl <- 1 # allometric exponent on CL
eta.cl ~ 1
# interindividual variability on clearance and volume
add.err <- 0.1 # residual variability
})
model({
cl <- exp(tcl + eta.cl) # individual value of clearance
v <- exp(tv + all.cl * log_allo_wt) # individual value of volume
ke <- cl / v # elimination rate constant
d / dt(A1) <- -ke * A1 # model differential equation
cp <- A1 / v # concentration in plasma
cp ~ add(add.err) # define error model
})
}
ref <- list(log_allo_wt = c(all.cl = "tv"))
p7 <- nlmixr(run7)
## I'm not sure why, but this doesn't seem to work, though when they parse they seem to be correct.
## expect_equal("Parsing on v without eta works.",{
## expect_true(p7$cov.ref$log_allo_wt["all.cl"]=="tv");
## })
},
test = "saem"
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.