Nothing
#' @title Construct An Object of mxModel for Latent Change Score Model with Time-invariant Covariates (If Any) To Be
#' Evaluated
#'
#' @description This function builds up an object of mxModel for a Latent Change Score Model with user-specified
#' functional form (including whether intrinsically nonlinear) with time-invariant covariates (if any).
#'
#' @param dat A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
#' repeated measurements and occasions, and time-invariant covariates (TICs) if any. It takes the value passed from \code{getLCSM()}.
#' @param t_var A string specifying the prefix of the column names corresponding to the time variable at each study wave.
#' It takes the value passed from \code{getLCSM()}.
#' @param y_var A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
#' It takes the value passed from \code{getLCSM()}.
#' @param curveFun A string specifying the functional form of the growth curve. Supported options for latent change score
#' models include: \code{"quadratic"} (or \code{"QUAD"}), \code{"negative exponential"} (or \code{"EXP"}), \code{"Jenss-Bayley"}
#' (or \code{"JB"}), and \code{"nonparametric"} (or \code{"NonP"}). It takes the value passed from \code{getLCSM()}.
#' @param intrinsic A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the value
#' passed from \code{getLCSM()}.
#' @param records A numeric vector specifying indices of the study waves. It takes the value passed from \code{getLCSM()}.
#' @param growth_TIC A string or character vector specifying the column name(s) of time-invariant covariate(s) contributing to the
#' variability of growth factors if any. It takes the value passed from \code{getLCSM()}.
#' @param starts A list of initial values for the parameters, either takes the value passed from \code{getLCSM()} or
#' derived by the helper function \code{getUNI.initial()}.
#'
#' @return A pre-optimized mxModel for a Latent Change Score Model.
#'
#' @keywords internal
#'
#' @importFrom OpenMx mxPath mxModel mxAlgebra mxMatrix mxData
#'
getLCSM.mxModel <- function(dat, t_var, y_var, curveFun, intrinsic, records, growth_TIC, starts){
# Define manifest variables
manifests <- paste0(y_var, records)
# Define paths for adding growth TICs if any
TIC_MEAN <- TIC_VAR <- BETA <- list()
if (!is.null(growth_TIC)){
nTICs <- length(growth_TIC)
# Mean values of TIC(s)
TIC_MEAN <- mxPath(from = "one", to = growth_TIC, arrows = 1, free = TRUE, values = starts[[2]][[1]],
labels = paste0("mux", 1:nTICs))
# Var-cov of TIC(s)
TIC_VAR <- mxPath(from = growth_TIC, to = growth_TIC, connect = "unique.pairs", arrows = 2, free = TRUE,
values = starts[[2]][[2]],
labels = paste0("phi", 1:(nTICs * (nTICs + 1)/2)))
}
# Define paths from latent true scores to observed scores
PATH_L <- mxPath(from = paste0("ly", records), to = paste0(y_var, records),
arrows = 1, free = FALSE, values = 1)
# Define paths from latent instantaneous rate of change at each measurement to true scores
PATH_SLP <- mxPath(from = paste0("dy", records[-1]),
to = paste0("ly", records[-1]), arrows = 1, free = FALSE,
values = 0, labels = paste0("lag", records[-1], "[1,1]"))
# Define autoregressive paths
PATH_AUTO <- mxPath(from = paste0("ly", records[-length(records)]),
to = paste0("ly", records[-1]), arrows = 1,
free = FALSE, values = 1)
# Obtain factor loadigs for the specified functional form
GF_loadings <- getUNI.loadings(y_model = "LCSM", t_var = t_var, y_var = y_var, curveFun = curveFun,
intrinsic = intrinsic, records = records)
# Obtain additional parameters (derived) for the specified functional form
AddPara <- getUNI.addpara(dat = dat, curveFun = curveFun, intrinsic = intrinsic, t_var = t_var,
records = records, growth_TIC = growth_TIC, decompose = NULL, starts = starts)
if (curveFun %in% c("nonparametric", "NonP")){
latents <- c("eta0", "eta1", # growth factors
paste0("dy", records[-1]), # latent change scores
paste0("ly", records)) # latent true scores
if (!is.null(growth_TIC)){
manifests <- c(manifests, growth_TIC)
nGF <- length(latents) - length(records) * 2 + 1
nTICs <- length(growth_TIC)
for (p in 1:nGF){
BETA[[p]] <- mxPath(from = growth_TIC, to = latents[p], arrows = 1, free = TRUE, values = starts[[3]][p, ],
labels = paste0("beta", p - 1, 1:nTICs))
}
model_mx <- mxModel(name = "LCSM_TICs, Nonparametric Functional Form", type = "RAM",
mxData(observed = dat, type = "raw"),
manifestVars = manifests, latentVars = latents,
mxPath(from = "one", to = latents[1:2], arrows = 1, free = TRUE, values = starts[[1]][[1]],
labels = c("Y_mueta0", "Y_mueta1")),
mxPath(from = latents[1:2], to = latents[1:2], arrows = 2, connect = "unique.pairs", free = TRUE,
values = starts[[1]][[2]], labels = c("Y_psi00", "Y_psi01", "Y_psi11")),
mxPath(from = "eta0", to = "ly1", arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0("dy", records[-1]), arrows = 1,
free = c(F, rep(T, length(records) - 2)),
values = c(1, starts[[1]][[4]][-1]),
labels = paste0("Y_rel_rate", 1:(length(records) - 1))),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records), arrows = 2, free = TRUE,
values = starts[[1]][[3]], labels = "Y_residuals"),
mxAlgebra(rbind(Y_mueta0, Y_mueta1), name = "Y_alpha0"),
mxAlgebra(rbind(cbind(Y_psi00, Y_psi01),
cbind(Y_psi01, Y_psi11)), name = "Y_psi_r"),
mxMatrix("Full", 2, length(growth_TIC), free = TRUE, values = starts[[3]],
labels = c(paste0("beta0", 1:length(growth_TIC)),
paste0("beta1", 1:length(growth_TIC))), byrow = T, name = "beta"),
mxMatrix("Full", length(growth_TIC), 1, free = TRUE, values = starts[[2]][[1]],
labels = c(paste0("mux", 1:length(growth_TIC))), byrow = F, name = "mux"),
mxAlgebra(Y_alpha0 + beta %*% mux, name = "Y_mean0"),
TIC_MEAN, TIC_VAR, BETA, PATH_L, PATH_SLP, PATH_AUTO,
GF_loadings, AddPara)
}
else if (is.null(growth_TIC)){
model_mx <- mxModel(name = "LCSM, Nonparametric Functional Form", type = "RAM",
mxData(observed = dat, type = "raw"),
manifestVars = manifests, latentVars = latents,
mxPath(from = "one", to = latents[1:2], arrows = 1, free = TRUE, values = starts[[1]][[1]],
labels = c("Y_mueta0", "Y_mueta1")),
mxPath(from = latents[1:2], to = latents[1:2], arrows = 2, connect = "unique.pairs", free = TRUE,
values = starts[[1]][[2]], labels = c("Y_psi00", "Y_psi01", "Y_psi11")),
mxPath(from = "eta0", to = "ly1", arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0("dy", records[-1]), arrows = 1,
free = c(F, rep(T, length(records) - 2)),
values = c(1, starts[[1]][[4]][-1]),
labels = paste0("Y_rel_rate", 1:(length(records) - 1))),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records), arrows = 2, free = TRUE,
values = starts[[1]][[3]], labels = "Y_residuals"),
mxAlgebra(rbind(Y_mueta0, Y_mueta1), name = "Y_mean0"),
mxAlgebra(rbind(cbind(Y_psi00, Y_psi01),
cbind(Y_psi01, Y_psi11)), name = "Y_psi0"),
PATH_L, PATH_SLP, PATH_AUTO, GF_loadings, AddPara)
}
}
else if (curveFun %in% c("quadratic", "QUAD")){
latents <- c("eta0", "eta1", "eta2", # growth factors
paste0("dy", records[-1]), # latent change scores
paste0("ly", records)) # latent true scores
if (!is.null(growth_TIC)){
manifests <- c(manifests, growth_TIC)
nGF <- length(latents) - length(records) * 2 + 1
nTICs <- length(growth_TIC)
for (p in 1:nGF){
BETA[[p]] <- mxPath(from = growth_TIC, to = latents[p], arrows = 1, free = TRUE, values = starts[[3]][p, ],
labels = paste0("beta", p - 1, 1:nTICs))
}
model_mx <- mxModel(name = "LCSM_TICs, Quadratic Functional Form", type = "RAM",
mxData(observed = dat, type = "raw"),
manifestVars = manifests, latentVars = latents,
mxPath(from = "one", to = latents[1:3], arrows = 1, free = TRUE, values = starts[[1]][[1]],
labels = c("Y_mueta0", "Y_mueta1", "Y_mueta2")),
mxPath(from = latents[1:3], to = latents[1:3], arrows = 2, connect = "unique.pairs", free = TRUE,
values = starts[[1]][[2]], labels = c("Y_psi00", "Y_psi01", "Y_psi02", "Y_psi11", "Y_psi12", "Y_psi22")),
mxPath(from = "eta0", to = "ly1", arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0("dy", records[-1]), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta2", to = paste0("dy", records[-1]), arrows = 1, free = FALSE, values = 0,
labels = paste0("L2", records[-1], "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records), arrows = 2, free = TRUE,
values = starts[[1]][[3]], labels = "Y_residuals"),
mxAlgebra(rbind(Y_mueta0, Y_mueta1, Y_mueta2), name = "Y_alpha0"),
mxAlgebra(rbind(cbind(Y_psi00, Y_psi01, Y_psi02),
cbind(Y_psi01, Y_psi11, Y_psi12),
cbind(Y_psi02, Y_psi12, Y_psi22)), name = "Y_psi_r"),
mxMatrix("Full", 3, length(growth_TIC), free = TRUE, values = starts[[3]],
labels = c(paste0("beta0", 1:length(growth_TIC)),
paste0("beta1", 1:length(growth_TIC)),
paste0("beta2", 1:length(growth_TIC))), byrow = T, name = "beta"),
mxMatrix("Full", length(growth_TIC), 1, free = TRUE, values = starts[[2]][[1]],
labels = c(paste0("mux", 1:length(growth_TIC))), byrow = F, name = "mux"),
mxAlgebra(Y_alpha0 + beta %*% mux, name = "Y_mean0"),
TIC_MEAN, TIC_VAR, BETA, PATH_L, PATH_SLP, PATH_AUTO,
GF_loadings, AddPara)
}
else if (is.null(growth_TIC)){
model_mx <- mxModel(name = "LCSM, Quadratic Functional Form", type = "RAM",
mxData(observed = dat, type = "raw"),
manifestVars = manifests, latentVars = latents,
mxPath(from = "one", to = latents[1:3], arrows = 1, free = TRUE, values = starts[[1]][[1]],
labels = c("Y_mueta0", "Y_mueta1", "Y_mueta2")),
mxPath(from = latents[1:3], to = latents[1:3], arrows = 2, connect = "unique.pairs", free = TRUE,
values = starts[[1]][[2]], labels = c("Y_psi00", "Y_psi01", "Y_psi02", "Y_psi11", "Y_psi12", "Y_psi22")),
mxPath(from = "eta0", to = "ly1", arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0("dy", records[-1]), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta2", to = paste0("dy", records[-1]), arrows = 1, free = FALSE, values = 0,
labels = paste0("L2", records[-1], "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records), arrows = 2, free = TRUE,
values = starts[[1]][[3]], labels = "Y_residuals"),
mxAlgebra(rbind(Y_mueta0, Y_mueta1, Y_mueta2), name = "Y_mean0"),
mxAlgebra(rbind(cbind(Y_psi00, Y_psi01, Y_psi02),
cbind(Y_psi01, Y_psi11, Y_psi12),
cbind(Y_psi02, Y_psi12, Y_psi22)), name = "Y_psi0"),
PATH_L, PATH_SLP, PATH_AUTO, GF_loadings, AddPara)
}
}
else if (curveFun %in% c("negative exponential", "EXP")){
if (intrinsic){
latents <- c("eta0", "eta1", "deltag", # growth factors
paste0("dy", records[-1]), # latent change scores
paste0("ly", records)) # latent true scores
if (!is.null(growth_TIC)){
manifests <- c(manifests, growth_TIC)
nGF <- length(latents) - length(records) * 2 + 1
nTICs <- length(growth_TIC)
for (p in 1:(nGF - 1)){
BETA[[p]] <- mxPath(from = growth_TIC, to = latents[p], arrows = 1, free = TRUE, values = starts[[3]][p, ],
labels = paste0("beta", p - 1, 1:nTICs))
}
BETA[[nGF]] <- mxPath(from = growth_TIC, to = latents[nGF], arrows = 1, free = TRUE, values = starts[[3]][nGF, ],
labels = paste0("beta", "g", 1:nTICs))
model_mx <- mxModel(name = "LCSM_TICs, Negative Exponential Functional Form, Random Ratio", type = "RAM",
mxData(observed = dat, type = "raw"),
manifestVars = manifests, latentVars = latents,
mxPath(from = "one", to = latents[1:2], arrows = 1, free = TRUE, values = starts[[1]][[1]][1:2],
labels = c("Y_mueta0", "Y_mueta1")),
mxMatrix("Full", 1, 1, free = TRUE, values = starts[[1]][[1]][3], labels = "Y_slp_ratio", name = "Y_mug"),
mxPath(from = latents[1:3], to = latents[1:3], arrows = 2, connect = "unique.pairs", free = TRUE,
values = starts[[1]][[2]], labels = c("Y_psi00", "Y_psi01", "Y_psi0g", "Y_psi11", "Y_psi1g", "Y_psigg")),
mxPath(from = "eta0", to = "ly1", arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0("dy", records[-1]), arrows = 1, free = FALSE, values = 0,
labels = paste0("L1", records[-1], "[1,1]")),
mxPath(from = "deltag", to = paste0("dy", records[-1]), arrows = 1, free = FALSE, values = 0,
labels = paste0("L2", records[-1], "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records), arrows = 2, free = TRUE,
values = starts[[1]][[3]], labels = "Y_residuals"),
mxAlgebra(rbind(Y_mueta0, Y_mueta1, Y_slp_ratio), name = "Y_alpha0"),
mxAlgebra(rbind(cbind(Y_psi00, Y_psi01, Y_psi0g),
cbind(Y_psi01, Y_psi11, Y_psi1g),
cbind(Y_psi0g, Y_psi1g, Y_psigg)), name = "Y_psi_r"),
mxMatrix("Full", 3, length(growth_TIC), free = TRUE, values = starts[[3]],
labels = c(paste0("beta0", 1:length(growth_TIC)),
paste0("beta1", 1:length(growth_TIC)),
paste0("betag", 1:length(growth_TIC))), byrow = T, name = "beta"),
mxMatrix("Full", length(growth_TIC), 1, free = TRUE, values = starts[[2]][[1]],
labels = c(paste0("mux", 1:length(growth_TIC))), byrow = F, name = "mux"),
mxAlgebra(Y_alpha0 + beta %*% mux, name = "Y_mean0"),
TIC_MEAN, TIC_VAR, BETA, PATH_L, PATH_SLP, PATH_AUTO,
GF_loadings, AddPara)
}
else if (is.null(growth_TIC)){
model_mx <- mxModel(name = "LCSM, Negative Exponential Functional Form, Random Ratio", type = "RAM",
mxData(observed = dat, type = "raw"),
manifestVars = manifests, latentVars = latents,
mxPath(from = "one", to = latents[1:2], arrows = 1, free = TRUE, values = starts[[1]][[1]][1:2],
labels = c("Y_mueta0", "Y_mueta1")),
mxMatrix("Full", 1, 1, free = TRUE, values = starts[[1]][[1]][3], labels = "Y_slp_ratio", name = "Y_mug"),
mxPath(from = latents[1:3], to = latents[1:3], arrows = 2, connect = "unique.pairs", free = TRUE,
values = starts[[1]][[2]], labels = c("Y_psi00", "Y_psi01", "Y_psi0g", "Y_psi11", "Y_psi1g", "Y_psigg")),
mxPath(from = "eta0", to = "ly1", arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0("dy", records[-1]), arrows = 1, free = FALSE, values = 0,
labels = paste0("L1", records[-1], "[1,1]")),
mxPath(from = "deltag", to = paste0("dy", records[-1]), arrows = 1, free = FALSE, values = 0,
labels = paste0("L2", records[-1], "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records), arrows = 2, free = TRUE,
values = starts[[1]][[3]], labels = "Y_residuals"),
mxAlgebra(rbind(Y_mueta0, Y_mueta1, Y_slp_ratio), name = "Y_mean0"),
mxAlgebra(rbind(cbind(Y_psi00, Y_psi01, Y_psi0g),
cbind(Y_psi01, Y_psi11, Y_psi1g),
cbind(Y_psi0g, Y_psi1g, Y_psigg)), name = "Y_psi0"),
PATH_L, PATH_SLP, PATH_AUTO, GF_loadings, AddPara)
}
}
else if (!intrinsic){
latents <- c("eta0", "eta1", # growth factors
paste0("dy", records[-1]), # latent change scores
paste0("ly", records)) # latent true scores
if (!is.null(growth_TIC)){
manifests <- c(manifests, growth_TIC)
nGF <- length(latents) - length(records) * 2 + 1
nTICs <- length(growth_TIC)
for (p in 1:nGF){
BETA[[p]] <- mxPath(from = growth_TIC, to = latents[p], arrows = 1, free = TRUE, values = starts[[3]][p, ],
labels = paste0("beta", p - 1, 1:nTICs))
}
model_mx <- mxModel(name = "LCSM_TICs, Negative Exponential Functional Form, Fixed Ratio", type = "RAM",
mxData(observed = dat, type = "raw"),
manifestVars = manifests, latentVars = latents,
mxPath(from = "one", to = latents[1:2], arrows = 1, free = TRUE, values = starts[[1]][[1]][1:2],
labels = c("Y_mueta0", "Y_mueta1")),
mxMatrix("Full", 1, 1, free = TRUE, values = starts[[1]][[1]][3], labels = "Y_slp_ratio", name = "Y_mug"),
mxPath(from = latents[1:2], to = latents[1:2], arrows = 2, connect = "unique.pairs", free = TRUE,
values = starts[[1]][[2]][c(1:2, 4)], labels = c("Y_psi00", "Y_psi01", "Y_psi11")),
mxPath(from = "eta0", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0("dy", records[-1]), arrows = 1, free = FALSE, values = 0,
labels = paste0("L1", records[-1], "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records), arrows = 2, free = TRUE,
values = starts[[1]][[3]], labels = "Y_residuals"),
mxAlgebra(rbind(Y_mueta0, Y_mueta1, Y_slp_ratio), name = "Y_alpha0"),
mxAlgebra(rbind(cbind(Y_psi00, Y_psi01),
cbind(Y_psi01, Y_psi11)), name = "Y_psi_r"),
mxMatrix("Full", 2, length(growth_TIC), free = TRUE, values = starts[[3]][1:2, ],
labels = c(paste0("beta0", 1:length(growth_TIC)),
paste0("beta1", 1:length(growth_TIC))), byrow = T, name = "beta"),
mxMatrix("Full", length(growth_TIC), 1, free = TRUE, values = starts[[2]][[1]],
labels = c(paste0("mux", 1:length(growth_TIC))), byrow = F, name = "mux"),
mxAlgebra(Y_alpha0[1:2, ] + beta %*% mux, name = "Y_mean0"),
TIC_MEAN, TIC_VAR, BETA, PATH_L, PATH_SLP, PATH_AUTO,
GF_loadings, AddPara)
}
else if (is.null(growth_TIC)){
model_mx <- mxModel(name = "LCSM, Negative Exponential Functional Form, Fixed Ratio", type = "RAM",
mxData(observed = dat, type = "raw"),
manifestVars = manifests, latentVars = latents,
mxPath(from = "one", to = latents[1:2], arrows = 1, free = TRUE, values = starts[[1]][[1]][1:2],
labels = c("Y_mueta0", "Y_mueta1")),
mxMatrix("Full", 1, 1, free = TRUE, values = starts[[1]][[1]][3], labels = "Y_slp_ratio", name = "Y_mug"),
mxPath(from = latents[1:2], to = latents[1:2], arrows = 2, connect = "unique.pairs", free = TRUE,
values = starts[[1]][[2]][c(1:2, 4)], labels = c("Y_psi00", "Y_psi01", "Y_psi11")),
mxPath(from = "eta0", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0("dy", records[-1]), arrows = 1, free = FALSE, values = 0,
labels = paste0("L1", records[-1], "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records), arrows = 2, free = TRUE,
values = starts[[1]][[3]], labels = "Y_residuals"),
mxAlgebra(rbind(Y_mueta0, Y_mueta1, Y_slp_ratio), name = "Y_mean0"),
mxAlgebra(rbind(cbind(Y_psi00, Y_psi01),
cbind(Y_psi01, Y_psi11)), name = "Y_psi0"),
PATH_L, PATH_SLP, PATH_AUTO, GF_loadings, AddPara)
}
}
}
else if (curveFun %in% c("Jenss-Bayley", "JB")){
if (intrinsic){
latents <- c("eta0", "eta1", "eta2", "deltag", # growth factors
paste0("dy", records[-1]), # latent change scores
paste0("ly", records)) # latent true scores
if (!is.null(growth_TIC)){
manifests <- c(manifests, growth_TIC)
nGF <- length(latents) - length(records) * 2 + 1
nTICs <- length(growth_TIC)
for (p in 1:(nGF - 1)){
BETA[[p]] <- mxPath(from = growth_TIC, to = latents[p], arrows = 1, free = TRUE, values = starts[[3]][p, ],
labels = paste0("beta", p - 1, 1:nTICs))
}
BETA[[nGF]] <- mxPath(from = growth_TIC, to = latents[nGF], arrows = 1, free = TRUE, values = starts[[3]][nGF, ],
labels = paste0("beta", "g", 1:nTICs))
model_mx <- mxModel(name = "LCSM_TICs, Jenss Bayley Functional Form, Random Ratio", type = "RAM",
mxData(observed = dat, type = "raw"),
manifestVars = manifests, latentVars = latents,
mxPath(from = "one", to = latents[1:3], arrows = 1, free = TRUE, values = starts[[1]][[1]][1:3],
labels = c("Y_mueta0", "Y_mueta1", "Y_mueta2")),
mxMatrix("Full", 1, 1, free = TRUE, values = starts[[1]][[1]][4], labels = "Y_acc_ratio", name = "Y_mug"),
mxPath(from = latents[1:4], to = latents[1:4], arrows = 2, connect = "unique.pairs", free = TRUE,
values = starts[[1]][[2]], labels = c("Y_psi00", "Y_psi01", "Y_psi02", "Y_psi0g", "Y_psi11",
"Y_psi12", "Y_psi1g", "Y_psi22", "Y_psi2g", "Y_psigg")),
mxPath(from = "eta0", to = "ly1", arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0("dy", records[-1]), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta2", to = paste0("dy", records[-1]), arrows = 1, free = FALSE, values = 0,
labels = paste0("L2", records[-1], "[1,1]")),
mxPath(from = "deltag", to = paste0("dy", records[-1]), arrows = 1, free = FALSE, values = 0,
labels = paste0("L3", records[-1], "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records), arrows = 2, free = TRUE,
values = starts[[1]][[3]], labels = "Y_residuals"),
mxAlgebra(rbind(Y_mueta0, Y_mueta1, Y_mueta2, Y_acc_ratio), name = "Y_alpha0"),
mxAlgebra(rbind(cbind(Y_psi00, Y_psi01, Y_psi02, Y_psi0g),
cbind(Y_psi01, Y_psi11, Y_psi12, Y_psi1g),
cbind(Y_psi02, Y_psi12, Y_psi22, Y_psi2g),
cbind(Y_psi0g, Y_psi1g, Y_psi2g, Y_psigg)), name = "Y_psi_r"),
mxMatrix("Full", 4, length(growth_TIC), free = TRUE, values = starts[[3]],
labels = c(paste0("beta0", 1:length(growth_TIC)),
paste0("beta1", 1:length(growth_TIC)),
paste0("beta2", 1:length(growth_TIC)),
paste0("betag", 1:length(growth_TIC))), byrow = T, name = "beta"),
mxMatrix("Full", length(growth_TIC), 1, free = TRUE, values = starts[[2]][[1]],
labels = c(paste0("mux", 1:length(growth_TIC))), byrow = F, name = "mux"),
mxAlgebra(Y_alpha0 + beta %*% mux, name = "Y_mean0"),
TIC_MEAN, TIC_VAR, BETA, PATH_L, PATH_SLP, PATH_AUTO,
GF_loadings, AddPara)
}
else if (is.null(growth_TIC)){
model_mx <- mxModel(name = "LCSM, Jenss Bayley Functional Form, Random Ratio", type = "RAM",
mxData(observed = dat, type = "raw"),
manifestVars = manifests, latentVars = latents,
mxPath(from = "one", to = latents[1:3], arrows = 1, free = TRUE, values = starts[[1]][[1]][1:3],
labels = c("Y_mueta0", "Y_mueta1", "Y_mueta2")),
mxMatrix("Full", 1, 1, free = TRUE, values = starts[[1]][[1]][4], labels = "Y_acc_ratio", name = "Y_mug"),
mxPath(from = latents[1:4], to = latents[1:4], arrows = 2, connect = "unique.pairs", free = TRUE,
values = starts[[1]][[2]], labels = c("Y_psi00", "Y_psi01", "Y_psi02", "Y_psi0g", "Y_psi11",
"Y_psi12", "Y_psi1g", "Y_psi22", "Y_psi2g", "Y_psigg")),
mxPath(from = "eta0", to = "ly1", arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0("dy", records[-1]), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta2", to = paste0("dy", records[-1]), arrows = 1, free = FALSE, values = 0,
labels = paste0("L2", records[-1], "[1,1]")),
mxPath(from = "deltag", to = paste0("dy", records[-1]), arrows = 1, free = FALSE, values = 0,
labels = paste0("L3", records[-1], "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records), arrows = 2, free = TRUE,
values = starts[[1]][[3]], labels = "Y_residuals"),
mxAlgebra(rbind(Y_mueta0, Y_mueta1, Y_mueta2, Y_acc_ratio), name = "Y_mean0"),
mxAlgebra(rbind(cbind(Y_psi00, Y_psi01, Y_psi02, Y_psi0g),
cbind(Y_psi01, Y_psi11, Y_psi12, Y_psi1g),
cbind(Y_psi02, Y_psi12, Y_psi22, Y_psi2g),
cbind(Y_psi0g, Y_psi1g, Y_psi2g, Y_psigg)), name = "Y_psi0"),
PATH_L, PATH_SLP, PATH_AUTO, GF_loadings, AddPara)
}
}
else if (!intrinsic){
latents <- c("eta0", "eta1", "eta2", # growth factors
paste0("dy", records[-1]), # latent change scores
paste0("ly", records)) # latent true scores
if (!is.null(growth_TIC)){
manifests <- c(manifests, growth_TIC)
nGF <- length(latents) - length(records) * 2 + 1
nTICs <- length(growth_TIC)
for (p in 1:nGF){
BETA[[p]] <- mxPath(from = growth_TIC, to = latents[p], arrows = 1, free = TRUE, values = starts[[3]][p, ],
labels = paste0("beta", p - 1, 1:nTICs))
}
model_mx <- mxModel(name = "LCSM_TICs, Jenss Bayley Functional Form, Fixed Ratio", type = "RAM",
mxData(observed = dat, type = "raw"),
manifestVars = manifests, latentVars = latents,
mxPath(from = "one", to = latents[1:3], arrows = 1, free = TRUE, values = starts[[1]][[1]][1:3],
labels = c("Y_mueta0", "Y_mueta1", "Y_mueta2")),
mxMatrix("Full", 1, 1, free = TRUE, values = starts[[1]][[1]][4], labels = "Y_acc_ratio", name = "Y_mug"),
mxPath(from = latents[1:3], to = latents[1:3], arrows = 2, connect = "unique.pairs", free = TRUE,
values = starts[[1]][[2]][c(1:3, 5:6, 8)],
labels = c("Y_psi00", "Y_psi01", "Y_psi02", "Y_psi11", "Y_psi12", "Y_psi22")),
mxPath(from = "eta0", to = "ly1", arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0("dy", records[-1]), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta2", to = paste0("dy", records[-1]), arrows = 1, free = FALSE, values = 0,
labels = paste0("L2", records[-1], "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records), arrows = 2, free = TRUE,
values = starts[[1]][[3]], labels = "Y_residuals"),
mxAlgebra(rbind(Y_mueta0, Y_mueta1, Y_mueta2, Y_acc_ratio), name = "Y_alpha0"),
mxAlgebra(rbind(cbind(Y_psi00, Y_psi01, Y_psi02),
cbind(Y_psi01, Y_psi11, Y_psi12),
cbind(Y_psi02, Y_psi12, Y_psi22)), name = "Y_psi_r"),
mxMatrix("Full", 3, length(growth_TIC), free = TRUE, values = starts[[3]][1:3, ],
labels = c(paste0("beta0", 1:length(growth_TIC)),
paste0("beta1", 1:length(growth_TIC)),
paste0("beta2", 1:length(growth_TIC))), byrow = T, name = "beta"),
mxMatrix("Full", length(growth_TIC), 1, free = TRUE, values = starts[[2]][[1]],
labels = c(paste0("mux", 1:length(growth_TIC))), byrow = F, name = "mux"),
mxAlgebra(Y_alpha0[1:3, ] + beta %*% mux, name = "Y_mean0"),
TIC_MEAN, TIC_VAR, BETA, PATH_L, PATH_SLP, PATH_AUTO,
GF_loadings, AddPara)
}
else if (is.null(growth_TIC)){
model_mx <- mxModel(name = "LCSM, Jenss Bayley Functional Form, Fixed Ratio", type = "RAM",
mxData(observed = dat, type = "raw"),
manifestVars = manifests, latentVars = latents,
mxPath(from = "one", to = latents[1:3], arrows = 1, free = TRUE, values = starts[[1]][[1]][1:3],
labels = c("Y_mueta0", "Y_mueta1", "Y_mueta2")),
mxMatrix("Full", 1, 1, free = TRUE, values = starts[[1]][[1]][4], labels = "Y_acc_ratio", name = "Y_mug"),
mxPath(from = latents[1:3], to = latents[1:3], arrows = 2, connect = "unique.pairs", free = TRUE,
values = starts[[1]][[2]][c(1:3, 5:6, 8)],
labels = c("Y_psi00", "Y_psi01", "Y_psi02", "Y_psi11", "Y_psi12", "Y_psi22")),
mxPath(from = "eta0", to = "ly1", arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0("dy", records[-1]), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta2", to = paste0("dy", records[-1]), arrows = 1, free = FALSE, values = 0,
labels = paste0("L2", records[-1], "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records), arrows = 2, free = TRUE,
values = starts[[1]][[3]], labels = "Y_residuals"),
mxAlgebra(rbind(Y_mueta0, Y_mueta1, Y_mueta2, Y_acc_ratio), name = "Y_mean0"),
mxAlgebra(rbind(cbind(Y_psi00, Y_psi01, Y_psi02),
cbind(Y_psi01, Y_psi11, Y_psi12),
cbind(Y_psi02, Y_psi12, Y_psi22)), name = "Y_psi0"),
PATH_L, PATH_SLP, PATH_AUTO, GF_loadings, AddPara)
}
}
}
return(model_mx)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.