Nothing
#' @title Get Factor Loadings for a Univariate Longitudinal Outcome with Specified Functional Curves
#'
#' @description This function specifies the factor loadings for a univariate longitudinal outcome with given functional
#' form. The longitudinal outcome is fit by a Latent Growth Curve Model or a Latent Change Score Model.
#'
#' @param y_model A string specifying how to fit the longitudinal outcome. Supported values are \code{"LGCM"} and
#' \code{"LCSM"}. It is \code{"LGCM"} or \code{"LCSM"}, or takes the value passed from \code{getTVCmodel()}.
#' @param t_var A string specifying the prefix of the column names corresponding to the time variable at each study wave.
#' It takes the value passed from \code{getLGCM()} or \code{getLCSM()} or \code{getTVCmodel()}.
#' @param y_var A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
#' It takes the value passed from \code{getLGCM()} or \code{getLCSM()} or \code{getTVCmodel()}.
#' @param curveFun A string specifying the functional form of the growth curve. Supported options for \code{y_model =
#' "LGCM"} include: \code{"linear"} (or \code{"LIN"}), \code{"quadratic"} (or \code{"QUAD"}), \code{"negative exponential"}
#' (or \code{"EXP"}), \code{"Jenss-Bayley"} (or \code{"JB"}), and \code{"bilinear spline"} (or \code{"BLS"}). Supported
#' options for \code{y_model = "LCSM"} include: \code{"quadratic"} (or \code{"QUAD"}), \code{"negative exponential"}
#' (or \code{"EXP"}), \code{"Jenss-Bayley"} (or \code{"JB"}), and \code{"nonparametric"} (or \code{"NonP"}). It takes the
#' value passed from \code{getLGCM()} or \code{getLCSM()} or \code{getTVCmodel()}.
#' @param intrinsic A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the
#' value passed from \code{getLGCM()} or \code{getLCSM()} or \code{getTVCmodel()}.
#' @param records A numeric vector specifying indices of the study waves. It takes the value passed from \code{getLGCM()} or
#' \code{getLCSM()} or \code{getTVCmodel()}.
#'
#' @return A list containing the specification of definition variables (i.e., individual time points for the latent
#' growth curve models, and individual time points and individual time lags (intervals) between adjacent time points
#' for latent change score models) and factor loadings of a univariate longitudinal outcome.
#'
#' @keywords internal
#'
#' @importFrom OpenMx mxMatrix mxAlgebraFromString mxAlgebra
#'
getUNI.loadings <- function(y_model, t_var, y_var, curveFun, intrinsic, records){
# Define `outPoint` to store individual time points from raw data
outPoint <- list()
for (j in records){
outPoint[[j]] <- mxMatrix("Full", 1, 1, free = F, labels = paste0("data.", t_var, j),
name = paste0("t", j))
}
if (y_model == "LGCM"){
if (curveFun %in% c("linear", "LIN")){
outLoads1 <- list()
for(j in records){
outLoads1[[j]] <- mxAlgebraFromString(paste0("t", j), name = paste0("L1", j))
}
outLoads <- list(outLoads1)
}
else if (curveFun %in% c("quadratic", "QUAD")){
outLoads1 <- outLoads2 <- list()
for(j in records){
outLoads1[[j]] <- mxAlgebraFromString(paste0("t", j), name = paste0("L1", j))
outLoads2[[j]] <- mxAlgebraFromString(paste0("t", j, "^2"), name = paste0("L2", j))
}
outLoads <- list(outLoads1, outLoads2)
}
else if (curveFun %in% c("negative exponential", "EXP")){
if (intrinsic){
outLoads1 <- outLoads2 <- list()
for(j in records){
outLoads1[[j]] <- mxAlgebraFromString(paste0("1 - exp(-Y_mug * t", j, ")"),
name = paste0("L1", j))
outLoads2[[j]] <- mxAlgebraFromString(paste0("Y_mueta1 * exp(-Y_mug * t", j, ") * t", j),
name = paste0("L2", j))
}
outLoads <- list(outLoads1, outLoads2)
}
else if (!intrinsic){
outLoads1 <- list()
for(j in records){
outLoads1[[j]] <- mxAlgebraFromString(paste0("1 - exp(-Y_mug * t", j, ")"),
name = paste0("L1", j))
}
outLoads <- list(outLoads1)
}
}
else if (curveFun %in% c("Jenss-Bayley", "JB")){
if (intrinsic){
outLoads1 <- outLoads2 <- outLoads3 <- list()
for(j in records){
outLoads1[[j]] <- mxAlgebraFromString(paste0("t", j), name = paste0("L1", j))
outLoads2[[j]] <- mxAlgebraFromString(paste0("exp(Y_mug * t", j, ") - 1"),
name = paste0("L2", j))
outLoads3[[j]] <- mxAlgebraFromString(paste0("Y_mueta2 * exp(Y_mug * t", j, ") * t", j),
name = paste0("L3", j))
}
outLoads <- list(outLoads1, outLoads2, outLoads3)
}
else if (!intrinsic){
outLoads1 <- outLoads2 <- list()
for(j in records){
outLoads1[[j]] <- mxAlgebraFromString(paste0("t", j), name = paste0("L1", j))
outLoads2[[j]] <- mxAlgebraFromString(paste0("exp(Y_mug * t", j, ") - 1"),
name = paste0("L2", j))
}
outLoads <- list(outLoads1, outLoads2)
}
}
else if (curveFun %in% c("bilinear spline", "BLS")){
if (intrinsic){
outLoads1 <- outLoads2 <- outLoads3 <- list()
for(j in records){
outLoads1[[j]] <- mxAlgebraFromString(paste0("t", j, " - Y_mug"), name = paste0("L1", j))
outLoads2[[j]] <- mxAlgebraFromString(paste0("abs(t", j, " - Y_mug)"), name = paste0("L2", j))
outLoads3[[j]] <- mxAlgebraFromString(paste0("-Y_mueta2s * (t", j, " - Y_mug)/abs(t", j,
" - Y_mug) - Y_mueta2s"), name = paste0("L3", j))
}
outLoads <- list(outLoads1, outLoads2, outLoads3)
}
else if (!intrinsic){
outLoads1 <- outLoads2 <- list()
for(j in records){
outLoads1[[j]] <- mxAlgebraFromString(paste0("t", j, " - Y_mug"), name = paste0("L1", j))
outLoads2[[j]] <- mxAlgebraFromString(paste0("abs(t", j, " - Y_mug)"), name = paste0("L2", j))
}
outLoads <- list(outLoads1, outLoads2)
}
}
return(list(outPoint, outLoads))
}
else if (y_model == "LCSM"){
# Define `outLag` to store individual time lags from raw data
outLag <- list()
outLag[[1]] <- mxAlgebra(0, name = paste0("lag", 1))
for(j in records[-1]){
outLag[[j]] <- mxAlgebraFromString(paste0("t", j , " - t", j - 1), name = paste0("lag", j))
}
# Define `midTime` to store individual midway time point through each interval from raw data, which help
# define factor loadings of latent change score models.
midTime <- list()
midTime[[1]] <- mxAlgebra(0, name = paste0("mid_t", 1))
for(j in records[-1]){
midTime[[j]] <- mxAlgebraFromString(paste0("(t", j , " + t", j - 1, ")/2"),
name = paste0("mid_t", j))
}
if (curveFun %in% c("nonparametric", "NonP")){
outLoads <- list()
}
else if (curveFun %in% c("quadratic", "QUAD")){
outLoads2 <- list()
outLoads2[[1]] <- mxAlgebra(0, name = paste0("L2", 1))
for(j in records[-1]){
outLoads2[[j]] <- mxAlgebraFromString(paste0("2 * mid_t", j), name = paste0("L2", j))
}
outLoads <- outLoads2
}
else if (curveFun %in% c("negative exponential", "EXP")){
if (intrinsic){
outLoads1 <- outLoads2 <- list()
outLoads1[[1]] <- mxAlgebra(0, name = paste0("L1", 1))
outLoads2[[1]] <- mxAlgebra(0, name = paste0("L2", 1))
for (j in records[-1]){
outLoads1[[j]] <- mxAlgebraFromString(paste0("Y_mug * exp(-Y_mug * mid_t", j, ")"),
name = paste0("L1", j))
outLoads2[[j]] <- mxAlgebraFromString(paste0("Y_mueta1 * exp(-Y_mug * mid_t", j,
") * (1 - Y_mug * mid_t", j, ")"),
name = paste0("L2", j))
}
outLoads <- list(outLoads1, outLoads2)
}
else if (!intrinsic){
outLoads1 <- list()
outLoads1[[1]] <- mxAlgebra(0, name = paste0("L1", 1))
for (j in records[-1]){
outLoads1[[j]] <- mxAlgebraFromString(paste0("Y_mug * exp(-Y_mug * mid_t", j, ")"),
name = paste0("L1", j))
}
outLoads <- list(outLoads1)
}
}
else if (curveFun %in% c("Jenss-Bayley", "JB")){
if (intrinsic){
outLoads2 <- outLoads3 <- list()
outLoads2[[1]] <- mxAlgebra(0, name = paste0("L2", 1))
outLoads3[[1]] <- mxAlgebra(0, name = paste0("L3", 1))
for (j in records[-1]){
outLoads2[[j]] <- mxAlgebraFromString(paste0("Y_mug * exp(Y_mug * mid_t", j, ")"),
name = paste0("L2", j))
outLoads3[[j]] <- mxAlgebraFromString(paste0("Y_mueta2 * (1 + Y_mug * mid_t", j, ")",
" * exp(Y_mug * mid_t", j, ")"),
name = paste0("L3", j))
}
outLoads <- list(outLoads2, outLoads3)
}
else if (!intrinsic){
outLoads2 <- list()
outLoads2[[1]] <- mxAlgebra(0, name = paste0("L2", 1))
for (j in records[-1]){
outLoads2[[j]] <- mxAlgebraFromString(paste0("Y_mug * exp(Y_mug * mid_t", j, ")"),
name = paste0("L2", j))
}
outLoads <- list(outLoads2)
}
}
return(list(outPoint, outLag, midTime, outLoads))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.