Nothing
#'
#' @title self start for plateau-quadratic function
#' @name SSpquad
#' @rdname SSpquad
#' @description Self starter for plateau-quadratic function with parameters a (plateau), xs (break-point), b (slope), c (quadratic)
#' @param x input vector
#' @param a the plateau value
#' @param xs break-point of transition between plateau and quadratic
#' @param b the slope (linear term)
#' @param c quadratic term
#' @return a numeric vector of the same length as x containing parameter estimates for equation specified
#' @details Reference for nonlinear regression Archontoulis and Miguez (2015) - (doi:10.2134/agronj2012.0506).
#' @export
#' @examples
#' \donttest{
#' require(ggplot2)
#' set.seed(12345)
#' x <- 1:40
#' y <- pquad(x, 5, 20, 1.7, -0.04) + rnorm(40, 0, 0.6)
#' dat <- data.frame(x = x, y = y)
#' fit <- nls(y ~ SSpquad(x, a, xs, b, c), data = dat)
#' ## plot
#' ggplot(data = dat, aes(x = x, y = y)) +
#' geom_point() +
#' geom_line(aes(y = fitted(fit)))
#' confint(fit)
#' }
NULL
pquadInit <- function(mCall, LHS, data, ...){
xy <- sortedXyData(mCall[["x"]], LHS, data)
if(nrow(xy) < 4){
stop("Too few distinct input values to fit a plateau-quadratic")
}
## Dumb guess for a and b is to fit a quadratic linear regression to
## Second half of the data
xy1 <- xy[1:floor(nrow(xy)/2),]
xy2 <- xy[floor(nrow(xy)/2):nrow(xy),]
xy2$x2 <- xy2[,"x"] - min(xy2[,"x"])
fit2 <- stats::lm(xy2[,"y"] ~ xy2[,"x2"] + I(xy2[,"x2"]^2))
a <- coef(fit2)[1]
b <- coef(fit2)[2]
c <- coef(fit2)[3]
## If I fix a and b maybe I can try to optimze xs only
objfun <- function(cfs){
pred <- pquad(xy[,"x"], a=cfs[1], xs=cfs[2], b=cfs[3], c=cfs[4])
ans <- sum((xy[,"y"] - pred)^2)
ans
}
op <- try(stats::optim(c(a, mean(xy[,"x"]),b,c), objfun,
method = "L-BFGS-B",
upper = c(Inf, max(xy[,"x"]), Inf, Inf),
lower = c(-Inf, min(xy[,"x"]), -Inf, -Inf)), silent = TRUE)
if(!inherits(op, "try-error")){
a <- op$par[1]
xs <- op$par[2]
b <- op$par[3]
c <- op$par[4]
}else{
## If it fails I use...
a <- mean(xy1[,"y"])
xs <- mean(xy[,"x"])
b <- b
c <- c
}
value <- c(a, xs, b, c)
names(value) <- mCall[c("a","xs","b","c")]
value
}
#' @rdname SSpquad
#' @return pquad: vector of the same length as x using the plateau-quadratic function
#' @export
pquad <- function(x, a, xs, b, c){
.value <- (x < xs) * a + (x >= xs) * (a + b * (x - xs) + c * (x - xs)^2)
## Derivative with respect to a
.exp1 <- 1 # ifelse(x < xs, 1, 1)
## Derivative with respect to xs
## .exp2 <- deriv(~ a + b * (x - xs) + c * (x - xs)^2, "xs")
.exp2 <- ifelse(x < xs, 0, -b + -(c * (2 * (x - xs))))
## Derivative with respect to b
## .exp3 <- deriv(~ a + b * (x - xs) + c * (x - xs)^2, "b")
.exp3 <- ifelse(x < xs, 0, x - xs)
## Derivative with respect to c
## .exp4 <- deriv(~ a + b * (x - xs) + c * (x - xs)^2, "c")
.exp4 <- ifelse(x < xs, 0, (x - xs)^2)
.actualArgs <- as.list(match.call()[c("a","xs","b","c")])
## Gradient
if (all(unlist(lapply(.actualArgs, is.name)))) {
.grad <- array(0, c(length(.value), 4L), list(NULL, c("a","xs","b","c")))
.grad[, "a"] <- .exp1
.grad[, "xs"] <- .exp2
.grad[, "b"] <- .exp3
.grad[, "c"] <- .exp4
dimnames(.grad) <- list(NULL, .actualArgs)
attr(.value, "gradient") <- .grad
}
.value
}
#' @rdname SSpquad
#' @export
SSpquad <- selfStart(pquad, initial = pquadInit, c("a","xs","b","c"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.