Nothing
### Testing function for confidence intervals
require(ggplot2)
require(nlraa)
require(nlme)
### Testing objects of class 'lm'
if(FALSE){
set.seed(123)
x <- 1:30
y <- linp(x, 0, 1, 20) + rnorm(30, 0, 0.5)
dat <- data.frame(x = x, y = y)
fit.lm <- lm(y ~ x + I(x^2), data = dat)
cfs.int <- confidence_intervals(fit.lm)
cfs.int <- confidence_intervals(fit.lm, method = c("wald", "bootstrap"))
ggplot(data = cfs.int) +
facet_wrap(~ parm, scales = "free") +
geom_point(aes(x = method, y = lower)) +
geom_point(aes(x = method, y = estimate), color = "red") +
geom_point(aes(x = method, y = upper)) +
ylab("Parameter values")
#### Fitting objects of class 'nls'
fit.nls <- nls(y ~ SSlinp(x, a, b, xs), data = dat)
cfs.int <- confidence_intervals(fit.nls)
cfs.int <- confidence_intervals(fit.nls, method = c("wald", "profile", "bootstrap"))
ggplot(data = cfs.int) +
facet_wrap(~ parm, scales = "free") +
geom_point(aes(x = method, y = lower)) +
geom_point(aes(x = method, y = estimate), color = "red") +
geom_point(aes(x = method, y = upper)) +
ylab("Parameter values")
data(barley, package = "nlraa")
## Fit a linear model (quadratic)
fit.lm <- lm(yield ~ NF + I(NF^2), data = barley)
cfs.int <- confidence_intervals(fit.lm, method = c("wald", "bootstrap"))
fit.nls <- nls(yield ~ SSlinp(NF, a, b, xs), data = barley)
cfs.int2 <- confidence_intervals(fit.nls,
R = 2e3,
method = c("wald", "profile", "bootstrap"))
ggplot(data = cfs.int2) +
facet_wrap(~ parm, scales = "free") +
geom_point(aes(x = method, y = lower)) +
geom_point(aes(x = method, y = estimate), color = "red") +
geom_point(aes(x = method, y = upper)) +
ylab("Parameter values")
fit.gls <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ~ 1 | Mare))
cfs.int3 <- confidence_intervals(fit.gls,
R = 2e3,
method = c("wald", "bootstrap"))
ggplot(data = cfs.int3) +
facet_wrap(~ parm, scales = "free") +
geom_point(aes(x = method, y = lower)) +
geom_point(aes(x = method, y = estimate), color = "red") +
geom_point(aes(x = method, y = upper)) +
ylab("Parameter values")
fit.gnls <- gnls(weight ~ SSlogis(Time, Asym, xmid, scal), Soybean,
weights = varPower())
cfs.int4 <- confidence_intervals(fit.gnls,
R = 2e3,
method = c("wald", "bootstrap"))
cfs.int4 <- confidence_intervals(fit.gnls,
R = 2e3,
method = "all")
ggplot(data = cfs.int4) +
facet_wrap(~ parm, scales = "free") +
geom_point(aes(x = method, y = lower)) +
geom_point(aes(x = method, y = estimate), color = "red") +
geom_point(aes(x = method, y = upper)) +
ylab("Parameter values")
### Testing lme
fit.lme <- lme(distance ~ age, data = Orthodont)
cfs.int5 <- confidence_intervals(fit.lme,
R = 2e3,
method = "all")
ggplot(data = cfs.int5) +
facet_wrap(~ parm, scales = "free") +
geom_point(aes(x = method, y = lower)) +
geom_point(aes(x = method, y = estimate), color = "red") +
geom_point(aes(x = method, y = upper)) +
ylab("Parameter values")
fit.nlme <- nlme(height ~ SSasymp(age, Asym, R0, lrc),
data = Loblolly,
fixed = Asym + R0 + lrc ~ 1,
random = Asym ~ 1,
start = c(Asym = 103, R0 = -8.5, lrc = -3.3))
cfs.int6 <- confidence_intervals(fit.nlme,
R = 2e3,
method = "all")
ggplot(data = cfs.int6) +
facet_wrap(~ parm, scales = "free") +
geom_point(aes(x = method, y = lower)) +
geom_point(aes(x = method, y = estimate), color = "red") +
geom_point(aes(x = method, y = upper)) +
ylab("Parameter values")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.