aij.theta | R Documentation |
This function computes the A=a_{ij}(\theta)
matrix useful in calculations for Tango's test T(\theta)
for spatial (disease) clustering (see Eqn (2) of \insertCitetango:2007;textualnnspat.
Here, A=a_{ij}(\theta)
is any matrix of a measure of the closeness between two points i
and j
with aii = 0
for all
i = 1, \ldots,n
, and \theta = (\theta_1,\ldots,\theta_p)^t
denotes the unknown parameter vector related
to cluster size and \delta = (\delta_1,\ldots,\delta_n)^t
, where \delta_i=1
if z_i
is a case and 0
otherwise.
The test is then
T(\theta)=\sum_{i=1}^n\sum_{j=1}^n\delta_i \delta_j a_{ij}(\theta)=\delta^t A(\theta) \delta
where A=a_{ij}(\theta)
.
T(\theta)
becomes Cuzick and Edwards T_k
tests statistic (\insertCitecuzick:1990;textualnnspat),
if a_{ij}=1
if z_j
is among the k
NNs of z_i
and 0 otherwise.
In this case \theta=k
and aij.theta
becomes aij.mat
(more specifically,
aij.mat(dat,k)
and aij.theta(dat,k,model="NN")
.
In Tango's exponential clinal model (\insertCitetango:2000;textualnnspat),
a_{ij}=\exp\left(-4 \left(\frac{d_{ij}}{\theta}\right)^2\right)
if i \ne j
and 0 otherwise,
where \theta
is a predetermined scale of cluster such that any pair of cases far apart beyond the distance
\theta
cannot be considered as a cluster and d_{ij}
denote the Euclidean distance between
two points i
and j
.
In the exponential model (\insertCitetango:2007;textualnnspat),
a_{ij}=\exp\left(-\frac{d_{ij}}{\theta}\right)
if i \ne j
and 0 otherwise,
where \theta
and d_{ij}
are as above.
In the hot-spot model (\insertCitetango:2007;textualnnspat),
a_{ij}=1
if d_{ij} \le \theta
and i \ne j
and 0 otherwise,
where \theta
and d_{ij}
are as above.
The argument model
has four options, NN
, exp.clinal
, exponential
, and
hot.spot
, with exp.clinal
being the default.
And the theta
argument specifies the scale of clustering or the clustering parameter in the particular
spatial disease clustering model.
See also (\insertCitetango:2007;textualnnspat) and the references therein.
aij.theta(dat, theta, model = "exp.clinal", ...)
dat |
The data set in one or higher dimensions, each row corresponds to a data point. |
theta |
A predetermined cluster scale so that any pair of cases farther apart then the distance
|
model |
Type of Tango's spatial clustering model with four options:
|
... |
are for further arguments, such as |
The A=a_{ij}(\theta)
matrix useful in calculations for Tango's test T(\theta)
.
Elvan Ceyhan
aij.mat
, aij.nonzero
and ceTk
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
k<-3#1 #try also 2,3
#aij for CE's Tk
Aij<-aij.theta(Y,k,model = "NN")
Aij2<-aij.mat(Y,k)
sum(abs(Aij-Aij2)) #check equivalence of aij.theta and aij.mat with model="NN"
Aij<-aij.theta(Y,k,method="max")
Aij2<-aij.mat(Y,k)
range(Aij-Aij2)
theta=.2
aij.theta(Y,theta,model = "exp.clinal")
aij.theta(Y,theta,model = "exponential")
aij.theta(Y,theta,model = "hot.spot")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.