View source: R/NNCTFunctions.R
cov.nnct | R Documentation |
Returns the covariance matrix of
cell counts N_{ij}
for i,j=1,\ldots,k
in the NNCT, ct
.
The covariance matrix is of dimension k^2 \times k^2
and its entries are cov(N_{ij},N_{kl})
when N_{ij}
values are
by default corresponding to the row-wise vectorization of ct
.
If byrow=FALSE
, the column-wise
vectorization of ct
is used.
These covariances are valid under RL
or conditional on Q
and R
under CSR.
See also (\insertCitedixon:1994,dixon:NNCTEco2002,ceyhan:eest-2010,ceyhan:jkss-posthoc-2017;textualnnspat).
cov.nnct(ct, varN, Q, R, byrow = TRUE)
ct |
A nearest neighbor contingency table |
varN |
The |
Q |
The number of shared NNs |
R |
The number of reflexive NNs (i.e., twice the number of reflexive NN pairs) |
byrow |
A logical argument (default= |
The k^2 \times k^2
covariance matrix of
cell counts N_{ij}
for i,j=1,\ldots,k
in the NNCT, ct
Elvan Ceyhan
covNrow2col
, cov.tct
,
and cov.nnsym
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
cov.nnct(ct,varN,Qv,Rv)
cov.nnct(ct,varN,Qv,Rv,byrow=FALSE)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
cov.nnct(ct,varN,Qv,Rv)
cov.nnct(ct,varN,Qv,Rv,byrow=FALSE)
#1D data points
n<-20 #or try sample(1:20,1)
X<-as.matrix(runif(n))# need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(n) would not work
ipd<-ipd.mat(X)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
cov.nnct(ct,varN,Qv,Rv)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.