coef | R Documentation |
Extracts basis function coefficients from a fit smoothing spline (fit by ss
), smooth model (fit by sm
), or generalized smooth model (fit by gsm
).
## S3 method for class 'gsm'
coef(object, ...)
## S3 method for class 'sm'
coef(object, ...)
## S3 method for class 'ss'
coef(object, ...)
object |
an object of class "gsm" output by the |
... |
other arugments (currently ignored) |
For "ss" objects, the coefficient vector will be of length m + q
where m
is the dimension of the null space and q
is the number of knots used for the fit.
For "sm" and "gsm" objects, the coefficient vector will be of length m + q
if the tprk = TRUE
(default). Otherwise the length will depend on the model formula and marginal knot placements.
Coefficients extracted from the model object
.
Nathaniel E. Helwig <helwig@umn.edu>
Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.
Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. Delamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.4135/9781526421036885885")}
ss
, sm
, gsm
model.matrix
, fitted.values
, residuals
# generate data
set.seed(1)
n <- 100
x <- seq(0, 1, length.out = n)
fx <- 2 + 3 * x + sin(2 * pi * x)
y <- fx + rnorm(n, sd = 0.5)
# smoothing spline
mod.ss <- ss(x, y, nknots = 10)
fit.ss <- fitted(mod.ss)
coef.ss <- coef(mod.ss)
X.ss <- model.matrix(mod.ss)
mean((fit.ss - X.ss %*% coef.ss)^2)
# smooth model
mod.sm <- sm(y ~ x, knots = 10)
fit.sm <- fitted(mod.sm)
coef.sm <- coef(mod.sm)
X.sm <- model.matrix(mod.sm)
mean((fit.sm - X.sm %*% coef.sm)^2)
# generalized smooth model (family = gaussian)
mod.gsm <- gsm(y ~ x, knots = 10)
fit.gsm <- fitted(mod.gsm)
coef.gsm <- coef(mod.gsm)
X.gsm <- model.matrix(mod.gsm)
mean((fit.gsm - X.gsm %*% coef.gsm)^2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.