summary | R Documentation |
summary
methods for object classes "gsm", "sm", and "ss".
## S3 method for class 'gsm'
summary(object, ...)
## S3 method for class 'sm'
summary(object, ...)
## S3 method for class 'ss'
summary(object, ...)
## S3 method for class 'summary.gsm'
print(x, digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"), ...)
## S3 method for class 'summary.sm'
print(x, digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"), ...)
## S3 method for class 'summary.ss'
print(x, digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"), ...)
object |
an object of class "gsm" output by the |
x |
an object of class "summary.gsm" output by the |
digits |
the minimum number of significant digits to be printed in values. |
signif.stars |
logical. If |
... |
additional arguments affecting the summary produced (currently ignored). |
Summary includes information for assessing the statistical and practical significance of the model terms.
Statistical inference is conducted via (approximate) frequentist chi-square tests using the Bayesian interpretation of a smoothing spline (Nychka, 1988; Wahba, 1983).
With multiple smooth terms included in the model, the inferential results may (and likely will) differ slightly depending on the tprk
argument (when using the gsm
and sm
functions).
If significance testing is of interest, the tprk = FALSE
option may be desirable, given that this allows for unique basis function coefficients for each model term.
In all cases, the inferential results are based on a (pseudo) F or chi-square statistic which fails to consider the uncertainty of the smoothing parameter estimation.
residuals |
the deviance residuals. |
fstatistic |
the F statistic for testing all effects (parametric and smooth). |
dev.expl |
the explained deviance. |
p.table |
the coefficient table for (approximate) inference on the parametric terms. |
s.table |
the coefficient table for (approximate) inference on the smooth terms. |
dispersion |
the estimate of the dispersion parameter. |
r.squared |
the observed coefficient of multiple determination. |
adj.r.squared |
the adjusted coefficient of multiple determination. |
kappa |
the collinearity indices, i.e., square-roots of the variance inflation factors (see |
pi |
the importance indices. Larger values indicate more importance, and the values satisfy |
call |
the original function call. |
family |
the specified family (for gsm objects). |
Nathaniel E. Helwig <helwig@umn.edu>
Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. Delamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.4135/9781526421036885885")}
Nychka, D. (1988). Bayesian confience intervals for smoothing splines. Journal of the American Statistical Association, 83(404), 1134-1143. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2307/2290146")}
Wahba, G. (1983). Bayesian "confidence intervals" for the cross-validated smoothing spline. Journal of the Royal Statistical Society. Series B, 45(1), 133-150. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/j.2517-6161.1983.tb01239.x")}
gsm
, sm
, and ss
### Example 1: gsm
# generate data
set.seed(1)
n <- 1000
x <- seq(0, 1, length.out = n)
z <- factor(sample(letters[1:3], size = n, replace = TRUE))
fun <- function(x, z){
mu <- c(-2, 0, 2)
zi <- as.integer(z)
fx <- mu[zi] + 3 * x + sin(2 * pi * x + mu[zi]*pi/4)
}
fx <- fun(x, z)
y <- rbinom(n = n, size = 1, p = 1 / (1 + exp(-fx)))
# define marginal knots
probs <- seq(0, 0.9, by = 0.1)
knots <- list(x = quantile(x, probs = probs),
z = letters[1:3])
# fit sm with specified knots (tprk = TRUE)
gsm.ssa <- gsm(y ~ x * z, family = binomial, knots = knots)
summary(gsm.ssa)
# fit sm with specified knots (tprk = FALSE)
gsm.gam <- gsm(y ~ x * z, family = binomial, knots = knots, tprk = FALSE)
summary(gsm.gam)
### Example 2: sm
# generate data
set.seed(1)
n <- 100
x <- seq(0, 1, length.out = n)
z <- factor(sample(letters[1:3], size = n, replace = TRUE))
fun <- function(x, z){
mu <- c(-2, 0, 2)
zi <- as.integer(z)
fx <- mu[zi] + 3 * x + sin(2 * pi * x + mu[zi]*pi/4)
}
fx <- fun(x, z)
y <- fx + rnorm(n, sd = 0.5)
# define marginal knots
probs <- seq(0, 0.9, by = 0.1)
knots <- list(x = quantile(x, probs = probs),
z = letters[1:3])
# fit sm with specified knots (tprk = TRUE)
sm.ssa <- sm(y ~ x * z, knots = knots)
summary(sm.ssa)
# fit sm with specified knots (tprk = FALSE)
sm.gam <- sm(y ~ x * z, knots = knots, tprk = FALSE)
summary(sm.gam)
### Example 3: ss
# generate data
set.seed(1)
n <- 100
x <- seq(0, 1, length.out = n)
fx <- 2 + 3 * x + sin(2 * pi * x)
y <- fx + rnorm(n, sd = 0.5)
# regular smoothing spline
ss.reg <- ss(x, y, nknots = 10)
summary(ss.reg)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.