model.matrix | R Documentation |
model.matrix
returns the design (or model) matrix used by the input object
to produce the fitted values (for objects of class ss
or sm
) or the linear predictors (for objects of class gsm
).
## S3 method for class 'ss'
model.matrix(object, ...)
## S3 method for class 'sm'
model.matrix(object, ...)
## S3 method for class 'gsm'
model.matrix(object, ...)
object |
an object of class |
... |
additional arguments (currently ignored) |
For ss
objects, the basis.poly
function is used to construct the design matrix.
For sm
objects, the predict.sm
function with option design = TRUE
is used to construct the design matrix.
For gsm
objects, the predict.gsm
function with option design = TRUE
is used to construct the design matrix.
The design matrix that is post-multiplied by the coefficients to produce the fitted values (or linear predictors).
Nathaniel E. Helwig <helwig@umn.edu>
Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.
Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. Delamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.4135/9781526421036885885")}
basis.poly
for the smoothing spline basis
predict.sm
for predicting from smooth models
predict.gsm
for predicting from generalized smooth models
# generate data
set.seed(1)
n <- 100
x <- seq(0, 1, length.out = n)
fx <- 2 + 3 * x + sin(2 * pi * x)
y <- fx + rnorm(n, sd = 0.5)
# smoothing spline
mod.ss <- ss(x, y, nknots = 10)
X.ss <- model.matrix(mod.ss)
mean((mod.ss$y - X.ss %*% mod.ss$fit$coef)^2)
# smooth model
mod.sm <- sm(y ~ x, knots = 10)
X.sm <- model.matrix(mod.sm)
mean((mod.sm$fitted.values - X.sm %*% mod.sm$coefficients)^2)
# generalized smooth model (family = gaussian)
mod.gsm <- gsm(y ~ x, knots = 10)
X.gsm <- model.matrix(mod.gsm)
mean((mod.gsm$linear.predictors - X.gsm %*% mod.gsm$coefficients)^2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.