thinplate | R Documentation |
Generate the smoothing spline basis and penalty matrix for a thin plate spline.
basis.tps(x, knots, m = 2, rk = TRUE, intercept = FALSE, ridge = FALSE)
penalty.tps(x, m = 2, rk = TRUE)
x |
Predictor variables (basis) or spline knots (penalty). Numeric or integer vector of length |
knots |
Spline knots. Numeric or integer vector of length |
m |
Penalty order. "m=1" for linear thin plate spline, "m=2" for cubic, and "m=3" for quintic. Must satisfy |
rk |
If true (default), the reproducing kernel parameterization is used. Otherwise, the classic thin plate basis is returned. |
intercept |
If |
ridge |
If |
Generates a basis function or penalty matrix used to fit linear, cubic, and quintic thin plate splines.
The basis function matrix has the form
X = [X_0, X_1]
where the matrix X_0
is of dimension n
by M-1
(plus 1 if an intercept is included) where M = {p+m-1 \choose p}
, and X_1
is a matrix of dimension n
by r
.
The X_0
matrix contains the "parametric part" of the basis, which includes polynomial functions of the columns of x
up to degree m-1
(and potentially interactions).
The matrix X_1
contains the "nonparametric part" of the basis.
If rk = TRUE
, the matrix X_1
consists of the reproducing kernel function
\rho(x, y) = (I - P_x) (I - P_y) E(|x - y|)
evaluated at all combinations of x
and knots
. Note that P_x
and P_y
are projection operators, |.|
denotes the Euclidean distance, and the TPS semi-kernel is defined as
E(z) = \alpha z^{2m-p} \log(z)
if p
is even and
E(z) = \beta z^{2m-p}
otherwise, where \alpha
and \beta
are positive constants (see References).
If rk = FALSE
, the matrix X_1
contains the TPS semi-kernel E(.)
evaluated at all combinations of x
and knots
. Note: the TPS semi-kernel is not positive (semi-)definite, but the projection is.
If rk = TRUE
, the penalty matrix consists of the reproducing kernel function
\rho(x, y) = (I - P_x) (I - P_y) E(|x - y|)
evaluated at all combinations of x
. If rk = FALSE
, the penalty matrix contains the TPS semi-kernel E(.)
evaluated at all combinations of x
.
Basis: Matrix of dimension c(length(x), df)
where df = nrow(as.matrix(knots)) + choose(p + m - 1, p) - !intercept
and p = ncol(as.matrix(x))
.
Penalty: Matrix of dimension c(r, r)
where r = nrow(as.matrix(x))
is the number of knots.
The inputs x
and knots
must have the same dimension.
If rk = TRUE
and ridge = TRUE
, the penalty matrix is the identity matrix.
Nathaniel E. Helwig <helwig@umn.edu>
Gu, C. (2013). Smoothing Spline ANOVA Models. 2nd Ed. New York, NY: Springer-Verlag. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/978-1-4614-5369-7")}
Helwig, N. E. (2017). Regression with ordered predictors via ordinal smoothing splines. Frontiers in Applied Mathematics and Statistics, 3(15), 1-13. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3389/fams.2017.00015")}
Helwig, N. E., & Ma, P. (2015). Fast and stable multiple smoothing parameter selection in smoothing spline analysis of variance models with large samples. Journal of Computational and Graphical Statistics, 24(3), 715-732. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/10618600.2014.926819")}
See polynomial
for a basis and penalty for numeric variables.
See spherical
for a basis and penalty for spherical variables.
######***###### standard parameterization ######***######
# generate data
set.seed(0)
n <- 101
x <- seq(0, 1, length.out = n)
knots <- seq(0, 0.95, by = 0.05)
eta <- 1 + 2 * x + sin(2 * pi * x)
y <- eta + rnorm(n, sd = 0.5)
# cubic thin plate spline basis
X <- basis.tps(x, knots, intercept = TRUE)
# cubic thin plate spline penalty
Q <- penalty.tps(knots)
# pad Q with zeros (for intercept and linear effect)
Q <- rbind(0, 0, cbind(0, 0, Q))
# define smoothing parameter
lambda <- 1e-5
# estimate coefficients
coefs <- psolve(crossprod(X) + n * lambda * Q) %*% crossprod(X, y)
# estimate eta
yhat <- X %*% coefs
# check rmse
sqrt(mean((eta - yhat)^2))
# plot results
plot(x, y)
lines(x, yhat)
######***###### ridge parameterization ######***######
# generate data
set.seed(0)
n <- 101
x <- seq(0, 1, length.out = n)
knots <- seq(0, 0.95, by = 0.05)
eta <- 1 + 2 * x + sin(2 * pi * x)
y <- eta + rnorm(n, sd = 0.5)
# cubic thin plate spline basis
X <- basis.tps(x, knots, intercept = TRUE, ridge = TRUE)
# cubic thin plate spline penalty (ridge)
Q <- diag(rep(c(0, 1), times = c(2, ncol(X) - 2)))
# define smoothing parameter
lambda <- 1e-5
# estimate coefficients
coefs <- psolve(crossprod(X) + n * lambda * Q) %*% crossprod(X, y)
# estimate eta
yhat <- X %*% coefs
# check rmse
sqrt(mean((eta - yhat)^2))
# plot results
plot(x, y)
lines(x, yhat)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.