| dwishart_cpp | R Documentation | 
The function dwishart() computes the density of a Wishart distribution.
The function rwishart() samples from a Wishart distribution.
The functions with suffix _cpp perform no input checks, hence are faster.
dwishart_cpp(x, df, scale, log = FALSE, inv = FALSE)
rwishart_cpp(df, scale, inv = FALSE)
dwishart(x, df, scale, log = FALSE, inv = FALSE)
rwishart(df, scale, inv = FALSE)
| x | [ | 
| df | [ | 
| scale | [ | 
| log | [ | 
| inv | [ | 
For dwishart(): The density value.
For rwishart(): A matrix, the random draw.
Other simulation helpers: 
Simulator,
correlated_regressors(),
ddirichlet_cpp(),
dmixnorm_cpp(),
dmvnorm_cpp(),
dtnorm_cpp(),
gaussian_tv(),
simulate_markov_chain()
x <- diag(2)
df <- 6
scale <- matrix(c(1, -0.3, -0.3, 0.8), ncol = 2)
# compute density
dwishart(x = x, df = df, scale = scale)
dwishart(x = x, df = df, scale = scale, log = TRUE)
dwishart(x = x, df = df, scale = scale, inv = TRUE)
# sample
rwishart(df = df, scale = scale)
rwishart(df = df, scale = scale, inv = TRUE)
# expectation of Wishart is df * scale
n <- 100
replicate(n, rwishart(df = df, scale = scale), simplify = FALSE) |>
  Reduce(f = "+") / n
df * scale
# expectation of inverse Wishart is scale / (df - p - 1)
n <- 100
replicate(n, rwishart(df = df, scale = scale, TRUE), simplify = FALSE) |>
  Reduce(f = "+") / n
scale / (df - 2 - 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.