Nothing
##
evalPower <- function(waldTest,
keep,
resNames=NULL)
{
## Useful objects
##
nDesigns <- dim(waldTest)[2]
p <- dim(waldTest)[3]
##
value <- matrix(NA, nrow=nDesigns, ncol=p, dimnames=resNames)
##
for(i in 1:nDesigns)
{
##
tempP <- waldTest[keep[,i],i,]
value[i,] <- apply(tempP, 2, mean) * 100
}
##
return(value)
}
##
evalOC <- function(betaTruth,
betaHat,
seHat,
waldTest,
keep,
alpha=0.05,
referent=2,
resNames=NULL)
{
## Useful objects
##
nDesigns <- dim(betaHat)[2]
p <- dim(betaHat)[3]
betaZero <- betaTruth
betaZero[which(betaZero == 0)] <- NA
##
betaMean <- matrix(NA, nrow=nDesigns, ncol=p, dimnames=resNames)
betaMeanBias <- matrix(NA, nrow=nDesigns, ncol=p, dimnames=resNames)
betaMeanPB <- matrix(NA, nrow=nDesigns, ncol=p, dimnames=resNames)
betaMedian <- matrix(NA, nrow=nDesigns, ncol=p, dimnames=resNames)
betaMedianBias <- matrix(NA, nrow=nDesigns, ncol=p, dimnames=resNames)
betaMedianPB <- matrix(NA, nrow=nDesigns, ncol=p, dimnames=resNames)
betaSD <- matrix(NA, nrow=nDesigns, ncol=p, dimnames=resNames)
betaMSE <- matrix(NA, nrow=nDesigns, ncol=p, dimnames=resNames)
seMean <- matrix(NA, nrow=nDesigns, ncol=p, dimnames=resNames)
seRatio <- matrix(NA, nrow=nDesigns, ncol=p, dimnames=resNames)
betaCP <- matrix(NA, nrow=nDesigns, ncol=p, dimnames=resNames)
betaPower <- matrix(NA, nrow=nDesigns, ncol=p, dimnames=resNames)
##
for(i in 1:nDesigns)
{
##
if(sum(keep[,i]) > 0)
{
##
tempB <- betaHat[keep[,i],i,]
tempSE <- seHat[keep[,i],i,]
tempP <- waldTest[keep[,i],i,]
##
betaMat <- matrix(betaTruth, nrow=nrow(tempB), ncol=p, byrow=TRUE)
##
betaMean[i,] <- apply(tempB, 2, mean)
betaMeanBias[i,] <- betaMean[i,] - betaTruth
betaMeanPB[i,] <- (betaMean[i,] - betaZero) / betaZero * 100
betaMedian[i,] <- apply(tempB, 2, median)
betaMedianBias[i,] <- betaMedian[i,] - betaTruth
betaMedianPB[i,] <- (betaMedian[i,] - betaZero) / betaZero * 100
betaSD[i,] <- apply(tempB, 2, sd)
betaMSE[i,] <- betaMeanBias[i,]^2 + apply(tempB, 2, var)
seMean[i,] <- apply(tempSE, 2, mean)
seRatio[i,] <- seMean[i,] / betaSD[i,] * 100
ciL <- tempB + (qnorm(alpha/2) * tempSE)
ciU <- tempB - (qnorm(alpha/2) * tempSE)
betaCP[i,] <- apply(((ciL < betaMat) & (betaMat < ciU)), 2, mean) * 100
betaPower[i,] <- apply(tempP, 2, mean) * 100
}
}
## Relative Uncertainty
betaRU <- betaSD / matrix(betaSD[referent,], nrow=nDesigns, ncol=p, byrow=TRUE) * 100
dimnames(betaRU) <- resNames
##
value <- list(betaMean=betaMean,
betaMeanBias=betaMeanBias,
betaMeanPB=betaMeanPB,
betaMedian=betaMedian,
betaMedianBias=betaMedianBias,
betaMedianPB=betaMedianPB,
betaSD=betaSD,
betaMSE=betaMSE,
seMean=seMean,
seRatio=seRatio,
betaCP=betaCP,
betaPower=betaPower,
betaRU=betaRU)
##
return(value)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.