Nothing
# pROC: Tools Receiver operating characteristic (ROC curves) with
# (partial) area under the curve, confidence intervals and comparison.
# Copyright (C) 2010-2014 Xavier Robin, Alexandre Hainard, Natacha Turck,
# Natalia Tiberti, Frédérique Lisacek, Jean-Charles Sanchez
# and Markus Müller
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
ci.sp <- function(...) {
UseMethod("ci.sp")
}
ci.sp.formula <- function(formula, data, ...) {
data.missing <- missing(data)
roc.data <- roc_utils_extract_formula(formula, data, ...,
data.missing = data.missing,
call = match.call())
if (length(roc.data$predictor.name) > 1) {
stop("Only one predictor supported in 'ci.sp'.")
}
response <- roc.data$response
predictor <- roc.data$predictors[, 1]
ci.sp(roc(response, predictor, ci=FALSE, ...), ...)
}
ci.sp.default <- function(response, predictor, ...) {
if (methods::is(response, "multiclass.roc") || methods::is(response, "multiclass.auc")) {
stop("'ci.sp' not available for multiclass ROC curves.")
}
roc <- roc.default(response, predictor, ci = FALSE, ...)
if (methods::is(roc, "smooth.roc")) {
return(ci.sp(smooth.roc = roc, ...))
}
else {
return(ci.sp(roc = roc, ...))
}
}
ci.sp.smooth.roc <- function(smooth.roc,
sensitivities = seq(0, 1, .1) * ifelse(smooth.roc$percent, 100, 1),
conf.level = 0.95,
boot.n = 2000,
boot.stratified = TRUE,
progress = getOption("pROCProgress")$name,
parallel = FALSE,
...
) {
if (conf.level > 1 | conf.level < 0)
stop("'conf.level' must be within the interval [0,1].")
if (roc_utils_is_perfect_curve(smooth.roc)) {
warning("ci.sp() of a ROC curve with AUC == 1 is always a null interval and can be misleading.")
}
# Check if called with density.cases or density.controls
if (is.null(smooth.roc$smoothing.args) || is.numeric(smooth.roc$smoothing.args$density.cases) || is.numeric(smooth.roc$smoothing.args$density.controls))
stop("Cannot compute CI of ROC curves smoothed with numeric density.controls and density.cases.")
# Get the non smoothed roc.
roc <- attr(smooth.roc, "roc")
roc$ci <- NULL # remove potential ci in roc to avoid infinite loop with smooth.roc()
# prepare the calls
smooth.roc.call <- as.call(c(utils::getS3method("smooth", "roc"), smooth.roc$smoothing.args))
if(inherits(progress, "list"))
progress <- roc_utils_get_progress_bar(progress, title="SP confidence interval", label="Bootstrap in progress...", ...)
if (boot.stratified) {
perfs <- ldply(1:boot.n, stratified.ci.smooth.sp, roc=roc, se=sensitivities, smooth.roc.call=smooth.roc.call, .progress=progress, .parallel=parallel)
}
else {
perfs <- ldply(1:boot.n, nonstratified.ci.smooth.sp, roc=roc, se=sensitivities, smooth.roc.call=smooth.roc.call, .progress=progress, .parallel=parallel)
}
if (any(is.na(perfs))) {
warning("NA value(s) produced during bootstrap were ignored.")
perfs <- perfs[!apply(perfs, 1, function(x) any(is.na(x))),]
}
ci <- t(apply(perfs, 2, quantile, probs=c(0+(1-conf.level)/2, .5, 1-(1-conf.level)/2)))
rownames(ci) <- paste(sensitivities, ifelse(roc$percent, "%", ""), sep="")
class(ci) <- c("ci.sp", "ci", class(ci))
attr(ci, "conf.level") <- conf.level
attr(ci, "boot.n") <- boot.n
attr(ci, "boot.stratified") <- boot.stratified
attr(ci, "sensitivities") <- sensitivities
attr(ci, "roc") <- smooth.roc
return(ci)
}
ci.sp.roc <- function(roc,
sensitivities = seq(0, 1, .1) * ifelse(roc$percent, 100, 1),
conf.level = 0.95,
boot.n = 2000,
boot.stratified = TRUE,
progress = getOption("pROCProgress")$name,
parallel = FALSE,
...
) {
if (conf.level > 1 | conf.level < 0)
stop("'conf.level' must be within the interval [0,1].")
if (roc_utils_is_perfect_curve(roc)) {
warning("ci.sp() of a ROC curve with AUC == 1 is always a null interval and can be misleading.")
}
if(inherits(progress, "list"))
progress <- roc_utils_get_progress_bar(progress, title="SP confidence interval", label="Bootstrap in progress...", ...)
if (boot.stratified) {
perfs <- ldply(1:boot.n, stratified.ci.sp, roc=roc, se=sensitivities, .progress=progress, .parallel=parallel)
}
else {
perfs <- ldply(1:boot.n, nonstratified.ci.sp, roc=roc, se=sensitivities, .progress=progress, .parallel=parallel)
}
if (any(is.na(perfs))) {
warning("NA value(s) produced during bootstrap were ignored.")
perfs <- perfs[!apply(perfs, 1, function(x) any(is.na(x))),]
}
ci <- t(apply(perfs, 2, quantile, probs=c(0+(1-conf.level)/2, .5, 1-(1-conf.level)/2)))
rownames(ci) <- paste(sensitivities, ifelse(roc$percent, "%", ""), sep="")
class(ci) <- c("ci.sp", "ci", class(ci))
attr(ci, "conf.level") <- conf.level
attr(ci, "boot.n") <- boot.n
attr(ci, "boot.stratified") <- boot.stratified
attr(ci, "sensitivities") <- sensitivities
attr(ci, "roc") <- roc
return(ci)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.