R/pSI.count.R

Defines functions pSI.count

Documented in pSI.count

#'@title 
#'Convert pSI output to gene count list
#'
#'@description 
#'\code{pSI.count} This functions counts number of genes specific to each sample type
#'
#'@details
#'Returns data frame consisting of 6 rows, one for each pSI threshold, and as many columns as cell types/samples were included in the analysis.
#'Each cell type/sample will have a count of many genes whose pSI values fall below each respective threshold for each cell type/sample.
#'NOTE:Supplementary data (human & mouse expression sets, calculated pSI datasets, etc.) can be found in \code{pSI.data} package located at the following URL:
#'\url{http://genetics.wustl.edu/jdlab/psi_package/}
#'
#'@param pSIs  data frame output from \code{specificity.index} function with the number of columns equal to the number of samples and genes as rows.
#'@param write.csv logical variable indicating if csv files will be written to the current working directory (default value is FALSE)
#'
#'@export
#'@author Xiaoxiao Xu, Alan B. Wells, David OBrien, Arye Nehorai, Joseph D. Dougherty
#'
#'@examples
#'##load sample pSI output
#'data(sample.data)
#'##Count the number of genes specific to each cell type/sample type across all pSI thresholds
#'pSI.out.count <- pSI.count(pSIs=sample.data$pSI.output, write.csv=TRUE)
#'

pSI.count <- function(pSIs, write.csv=FALSE){
  
  
  #Assigning variables used in loop, ie number of genes, number of samples etc.
  gene_l <- length(pSIs[,1])
  samples <- pSIs[1,]
  n_samples <- length(pSIs[1,])
  #name_columns <- c(seq(from=1, to=ncol(pSIs), by=2))
  names <- data.frame(array(NA, dim=c(1,n_samples)))
  names<- colnames(pSIs)
  
  
  for(b in c(0.05, 0.01, 0.001, 0.0001)){
    #create data frame to hold gene counts
    gene_count <- data.frame(array(NA, dim=c(1,1)))
    
    for(i in 1:n_samples){
      #filter out all NA values, then count how many fall below the current threshold for a given cell type 
      sig_tmp <- pSIs[!is.na(pSIs[,i]),]
      sig_tmp <- sig_tmp[sig_tmp[,i] < b,]
      gene_count <- cbind(gene_count, length(sig_tmp[,i]))
      
    }
    #during the first iteration of the previous loop the gene_count data set is column bound onto itself and must be removed
    gene_count <- gene_count[-1]
    #Assigns descriptive name to temporary loop variable
    assign(paste("gene_count", b, sep="_"),gene_count)
    
  }
  
  #row bind all the different and assign row & column names
  gene_count_1 <- rbind(get("gene_count_1e-04"), get("gene_count_0.001"), get("gene_count_0.01"), get("gene_count_0.05"))
  rownames(gene_count_1) <- c("0.0001", "0.001", "0.01", "0.05")
  colnames(gene_count_1) <- colnames(pSIs)
  
  #if boolean for writing CSV is TRUE then file will be written in current working directory
  if(write.csv==TRUE){
    write.csv(gene_count_1,"gene_count_1.csv")
    
  }
  return(gene_count_1)
  
  }

Try the pSI package in your browser

Any scripts or data that you put into this service are public.

pSI documentation built on May 29, 2017, 1:57 p.m.