R/specificity.index.R

Defines functions specificity.index

Documented in specificity.index

#'@title 
#'Specificity Index Statistic
#'
#'@description
#'\code{specificity.index}  Calculates specificity index statistic (pSI) values of input expression matrix which can be used for comparative 
#'quantitative analysis to identify genes enriched in specific cell populations across a large number of profiles. 
#'This measure correctly predicts in situ hybridization patterns for many cell types. \code{specificity.index} returns a data frame of equal size as input data frame, 
#'with pSI values replacing the expression values.
#'NOTE:Supplementary data (human & mouse expression sets, calculated pSI datasets, etc.) can be found in \code{pSI.data} package located at the following URL:
#'\url{http://genetics.wustl.edu/jdlab/psi_package/}
#'
#'@details
#' \eqn{SI_{n,1}=  \frac{ \sum_{k=2}^m rank( \frac{ IP_{1,n} }{ IP_{k,n} })  }{m-1}}
#' 
#'@param pSI.in  data frame with expresion values for genes in rows, and samples
#'or cell types in columns (at this point replicate arrays have been averaged, so
#'one column per cell type) 
#'@param pSI.in.filter matched array (same genes and samples) but with NA's for any
#' genes that should be excluded for a particular cell type.
#'@param bts numeric. number of distributions to average for permutation testing
#'@param p_max numeric. maximum pvalue to be calculated
#'@param e_min numeric. minimum expression value for a gene to be included. For microarray studies, a value of 50 has been the default value and for RNAseq studies, a value of 0.3 has been used as the default.
#'@param hist logical. option for producing histograms of actual & permuted distributions of gene rank
#'@param SI logical. option to output SI value instead of default pSI value
#'
#'@export
#'@author Xiaoxiao Xu, Alan B. Wells, David OBrien, Arye Nehorai, Joseph D. Dougherty
#'@references Joseph D. Dougherty, Eric F. Schmidt, Miho Nakajima, and Nathaniel Heintz
#'Analytical approaches to RNA profiling data for the identification of genes enriched in specific cells
#'Nucl. Acids Res. (2010)
#'
#'@examples
#'##load sample expression matrix
#'data(sample.data)
#'##calculate specificity index on expression matrix
#'##(Normally for RNAseq data, and e_min of 0.3, microarrays: e_min= 50)
#'pSI.output <- specificity.index(pSI.in=sample.data$pSI.input, e_min=20)
#'

specificity.index<-function(pSI.in, pSI.in.filter, bts=50, p_max=0.1, e_min=0.3, hist=FALSE, SI=FALSE){

  #make a clean version of pSI.in...
  dat_clean<-pSI.in
  #...for each sample, remove values with less than
  # 50 absolute expression...
  dat_clean[pSI.in<e_min]<-NA
  # for each sample remove those values that are designated to be filtered.
  if(!missing(pSI.in.filter)){
    dat_clean[is.na(pSI.in.filter)]<-NA
    #remove extra variable
    rm(pSI.in.filter)
  }
  
  #make variables to catch the output of this program
  lng <- length(pSI.in[1,])
  datComb<-array(NA,c(length(pSI.in[,1]),2*lng)) #will be 2x the length of input - one column for rank, one for pvalue
  colnames(datComb)<-c(rep(colnames(pSI.in), each=2))#copying over column names, repeating each name twice as noted above
  psi_columns <- c(seq(from=2, to=ncol(datComb), by=2))
  si_columns <- c(seq(from=1, to=ncol(datComb), by=2))
  #colnames(datComb)[psi_columns]<- paste(colnames(datComb)[psi_columns], "pvalue", sep="_")#rename second column
  rownames(datComb) <- rownames(pSI.in)
  
  #for each sample(cell type
  for(j in 1:lng) {
    
    #.. determine which samples are not you
    notme =c(1:(j-1),(j+1):lng)
    
    if(j==1){
      notme=c(2:lng)}
    
    if(j==lng){
      notme=c(1:(lng-1))}
    
    #make a matrix of those genes that are rankable for this cell type.
    TmpMat<-pSI.in[!is.na(dat_clean[,j]),]     # in other words, those that are NOT NA in the clean data for cell type j
    smps<-length(TmpMat[,1])   #  a variable for how many genes this is
    
    #for each other cell type sample with replacement from the values that are
    #not NA for this particular cell type.
    
    avg_ip_pre<-array(NA,c(smps,bts))  #blank a variable to hold the simulated distributions
    
    for(k in 1:bts){     #for 1 to the number of sampled distributions to create
      TmpMatSmp<-array(NA, c(smps, lng))    #blank a variable, number of (unflltered) genes by number of cell types
      for(i in 1:lng)  {  #for each cell type, sample with replacement from gene expression values
        TmpMatSmp[,i]<-sample(TmpMat[,i],smps, replace=TRUE)
      }
      #calcuate the log base 2 fold change for the current cell type (j) vs all others
      z<-log2(TmpMatSmp[,j]/TmpMatSmp[,notme])
      #blank variable
      rankz<-array(0,dim(z))
      z<-z*-1   #to invert the data, so low ranks end up being 'good', and NAs will go to the bottom
      #Calculate the rank of each gene within a each cell/cell comparison
      for(i in 1:(lng-1)) {rankz[,i]=rank(z[,i], na.last="keep")}
      #find the average rank for each gene across all samples
      avg_ip<-c()    #blank a variable
      # A distribution of the averages  each "gene"  rank
      avg_ip <- .rowMeans(rankz, m=smps, n=ncol(rankz))
      avg_ip_pre[,k]<-avg_ip
    }      #end for k
    
    avg_ip_dist<-sort(avg_ip_pre)
    
    #now make the actual distribution of average rank IPs
    # blank a variable Z original (zO) to catch it
    
    zO<-array(NA,c(length(dat_clean[,1]), lng-1))
    
    #... then calculate fold change for this cell type versus all those others
    #(log base two of ratio )
    # Notice that because we are using cleaned data, we will only
    # calculate this when the numerator is not NA, but the demoninator
    # is not filtered.
    zO<-log2(dat_clean[,j]/pSI.in[,notme])
    #blank an array to convert into from the data frame.
    rankzO<-array(0,dim(zO))
    zO<-zO*-1
    #Calculate the rank of each gene within a sample
    for(i in 1:(lng-1)) {rankzO[,i]=rank(zO[,i], na.last="keep")}
    # Move the values from the data frame to the array, so I can take a mean
    #blank a variable to catch the means
    avg_ipO<-c()
    #average the IPs for the actual values.
    avg_ipO <- .rowMeans(rankzO, m=nrow(rankzO), n=ncol(rankzO))
    if(hist==TRUE){
      # Make a picture of the situation.
      fnm = paste("hist_rnks",colnames(pSI.in)[j],".png",sep="_")
      png(filename=fnm, width=960, height=960)
      par(mfrow=c(2,2))
      hist(avg_ip_dist, freq=FALSE , xlim=c(0,smps), main="Sampled distribution")
      hist(avg_ipO, freq=FALSE, xlim=c(0,smps), main="Actual distribution")
      dev.off()
    }
    # make a variable to catch the Pvals
    pvals<-c()
    lng2<-length(avg_ipO)
    #for rankable genes, see where they would fall in the bootstraped distribution
    #use that to calculate a P value.
    # only calculate for p<p_max, to save time (usually p<.1)
    #so find cutoff p< p_max
    ctoff<-avg_ip_dist[(smps*bts)*p_max]
    avg_ip_dist_filt <- avg_ip_dist[which(avg_ip_dist<ctoff)]
    #avg_ip_dist<-rank(avg_ip_dist, na.last="keep")[where.is(avg_ip_dist<ctoff)]
    for (i in 1:lng2)
    {
      avg_ipO.i <- avg_ipO[i]
      if ((!is.na(avg_ipO.i))&(avg_ipO.i<ctoff))
      {
        avg_ip_dist_filt[1]<-avg_ipO.i
        pvals[i]<-((rank(avg_ip_dist_filt, na.last="keep")[1])/(smps*bts))
      }else{
        pvals[i]<-NA
      }
    }
    datComb[,((j*2)-1)]<-avg_ipO
    datComb[,(j*2)]<-pvals
    
  } # toend J loop (each sample)
  if(SI==TRUE){
    datComb <- datComb[,si_columns]
  }else{datComb <- datComb[,psi_columns]}
  
  return(data.frame(datComb)) #return this
  
}#end function

Try the pSI package in your browser

Any scripts or data that you put into this service are public.

pSI documentation built on May 29, 2017, 1:57 p.m.