| model_parameters.aov | R Documentation |
Parameters from ANOVAs
## S3 method for class 'aov'
model_parameters(
model,
type = NULL,
df_error = NULL,
ci = NULL,
alternative = NULL,
p_adjust = NULL,
test = NULL,
power = FALSE,
es_type = NULL,
keep = NULL,
drop = NULL,
include_intercept = FALSE,
table_wide = FALSE,
verbose = TRUE,
...
)
model |
Object of class |
type |
Numeric, type of sums of squares. May be 1, 2 or 3. If 2 or 3,
ANOVA-tables using |
df_error |
Denominator degrees of freedom (or degrees of freedom of the
error estimate, i.e., the residuals). This is used to compute effect sizes
for ANOVA-tables from mixed models. See 'Examples'. (Ignored for
|
ci |
Confidence Interval (CI) level for effect sizes specified in
|
alternative |
A character string specifying the alternative hypothesis;
Controls the type of CI returned: |
p_adjust |
String value, if not |
test |
String, indicating the type of test for |
power |
Logical, if |
es_type |
The effect size of interest. Not that possibly not all effect sizes are applicable to the model object. See 'Details'. For Anova models, can also be a character vector with multiple effect size names. |
keep |
Character containing a regular expression pattern that
describes the parameters that should be included (for |
drop |
See |
include_intercept |
Logical, if |
table_wide |
Logical that decides whether the ANOVA table should be in
wide format, i.e. should the numerator and denominator degrees of freedom
be in the same row. Default: |
verbose |
Toggle warnings and messages. |
... |
Arguments passed to |
For an object of class htest, data is extracted via insight::get_data(), and passed to the relevant function according to:
A t-test depending on type: "cohens_d" (default), "hedges_g", or one of "p_superiority", "u1", "u2", "u3", "overlap".
For a Paired t-test: depending on type: "rm_rm", "rm_av", "rm_b", "rm_d", "rm_z".
A Chi-squared tests of independence or Fisher's Exact Test, depending on type: "cramers_v" (default), "tschuprows_t", "phi", "cohens_w", "pearsons_c", "cohens_h", "oddsratio", "riskratio", "arr", or "nnt".
A Chi-squared tests of goodness-of-fit, depending on type: "fei" (default) "cohens_w", "pearsons_c"
A One-way ANOVA test, depending on type: "eta" (default), "omega" or "epsilon" -squared, "f", or "f2".
A McNemar test returns Cohen's g.
A Wilcoxon test depending on type: returns "rank_biserial" correlation (default) or one of "p_superiority", "vda", "u2", "u3", "overlap".
A Kruskal-Wallis test depending on type: "epsilon" (default) or "eta".
A Friedman test returns Kendall's W.
(Where applicable, ci and alternative are taken from the htest if not otherwise provided.)
For an object of class BFBayesFactor, using bayestestR::describe_posterior(),
A t-test depending on type: "cohens_d" (default) or one of "p_superiority", "u1", "u2", "u3", "overlap".
A correlation test returns r.
A contingency table test, depending on type: "cramers_v" (default), "phi", "tschuprows_t", "cohens_w", "pearsons_c", "cohens_h", "oddsratio", or "riskratio", "arr", or "nnt".
A proportion test returns p.
Objects of class anova, aov, aovlist or afex_aov, depending on type: "eta" (default), "omega" or "epsilon" -squared, "f", or "f2".
Objects of class datawizard_crosstab(s) / datawizard_table(s) built with datawizard::data_tabulate() - same as Chi-squared tests of independence / goodness-of-fit, respectively.
Other objects are passed to parameters::standardize_parameters().
For statistical models it is recommended to directly use the listed functions, for the full range of options they provide.
A data frame of indices related to the model's parameters.
For ANOVA-tables from mixed models (i.e. anova(lmer())), only
partial or adjusted effect sizes can be computed. Note that type 3 ANOVAs
with interactions involved only give sensible and informative results when
covariates are mean-centred and factors are coded with orthogonal contrasts
(such as those produced by contr.sum, contr.poly, or
contr.helmert, but not by the default contr.treatment).
df <- iris
df$Sepal.Big <- ifelse(df$Sepal.Width >= 3, "Yes", "No")
model <- aov(Sepal.Length ~ Sepal.Big, data = df)
model_parameters(model)
model_parameters(model, es_type = c("omega", "eta"), ci = 0.9)
model <- anova(lm(Sepal.Length ~ Sepal.Big, data = df))
model_parameters(model)
model_parameters(
model,
es_type = c("omega", "eta", "epsilon"),
alternative = "greater"
)
model <- aov(Sepal.Length ~ Sepal.Big + Error(Species), data = df)
model_parameters(model)
df <- iris
df$Sepal.Big <- ifelse(df$Sepal.Width >= 3, "Yes", "No")
mm <- lme4::lmer(Sepal.Length ~ Sepal.Big + Petal.Width + (1 | Species), data = df)
model <- anova(mm)
# simple parameters table
model_parameters(model)
# parameters table including effect sizes
model_parameters(
model,
es_type = "eta",
ci = 0.9,
df_error = dof_satterthwaite(mm)[2:3]
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.