R/plot.pec.R

Defines functions plot.pec

Documented in plot.pec

#' Plotting prediction error curves
#' 
#' Plotting prediction error curves for one or more prediction models.
#' 
#' From version 2.0.1 on the arguments legend.text, legend.args, lines.type,
#' lwd.lines, specials are obsolete and only available for backward
#' compatibility. Instead arguments for the invoked functions \code{legend},
#' \code{axis}, \code{Special} are simply specified as \code{legend.lty=2}. The
#' specification is not case sensitive, thus \code{Legend.lty=2} or
#' \code{LEGEND.lty=2} will have the same effect.  The function \code{axis} is
#' called twice, and arguments of the form \code{axis1.labels}, \code{axis1.at}
#' are used for the time axis whereas \code{axis2.pos}, \code{axis1.labels},
#' etc. are used for the y-axis.
#' 
#' These arguments are processed via \code{\dots{}} of \code{plot.pec} and
#' inside by using the function \code{resolveSmartArgs}.  Documentation of
#' these arguments can be found in the help pages of the corresponding
#' functions.
#' 
#' @param x Object of class \code{pec} obtained with function
#' \code{\link{pec}}.
#' @param what The name of the entry in \code{x}. Defauls to \code{PredErr}
#' Other choices are \code{AppErr}, \code{BootCvErr}, \code{Boot632},
#' \code{Boot632plus}.
#' @param models Specifies models in \code{x$models} for which the prediction
#' error curves are drawn. Defaults to all models.
#' @param xlim Plotting range on the x-axis.
#' @param ylim Plotting range on the y-axis.
#' @param xlab Label given to the x-axis.
#' @param ylab Label given to the y-axis.
#' @param axes Logical. If \code{FALSE} no axes are drawn.
#' @param col Vector of colors given to the curves of \code{models} in the
#' order determined by \code{models}.
#' @param lty Vector of lty's given to the curves of \code{models} in the order
#' determined by \code{models}.
#' @param lwd Vector of lwd's given to the curves of \code{models} in the order
#' determined by \code{models}.
#' @param type Plotting type: either \code{"l"} or \code{"s"}, see
#' \code{lines}.
#' @param smooth Logical. If \code{TRUE} the plotting type for lines is \code{'l'} else \code{'s'}.
#' @param add.refline Logical. If \code{TRUE} a dotted horizontal line is drawn
#' as a symbol for the naive rule that predicts probability .5 at all cutpoints
#' (i.e. time points in survival analysis).
#' @param add Logical. If \code{TRUE} only lines are added to an existing
#' device
#' @param legend if TRUE a legend is plotted by calling the function legend.
#' Optional arguments of the function \code{legend} can be given in the form
#' \code{legend.x=val} where x is the name of the argument and val the desired
#' value. See also Details.
#' @param special Logical. If \code{TRUE} the bootstrap curves of \code{models}
#' are plotted together with \code{predErr} of \code{models} by invoking the
#' function \code{Special}. Optional arguments of the function \code{Special}
#' can be given in the form \code{special.x=val} as with legend. See also
#' Details.
#' @param \dots Extra arguments that are passed to \code{\link{plot}}.
#' @return The (invisible) object.
#' @author Ulla B. Mogensen \email{ulmo@@biostat.ku.dk}, Thomas A. Gerds
#' \email{tag@@biostat.ku.dk}
#' @seealso
#' \code{\link{pec}}\code{\link{summary.pec}}\code{\link{Special}}\code{\link{prodlim}}
#' @keywords survival
#' @examples
#' 
#' 
#' # simulate data
#' # with a survival response and two predictors
#' library(prodlim)
#' library(survival)
#' set.seed(280180)
#' dat <- SimSurv(100)
#' 
#' # fit some candidate Cox models and
#' # compute the Kaplan-Meier estimate 
#' 
#' Models <- list("Kaplan.Meier"=survfit(Surv(time,status)~1,data=dat),
#'                "Cox.X1"=coxph(Surv(time,status)~X1,data=dat,x=TRUE,y=TRUE),
#'                "Cox.X2"=coxph(Surv(time,status)~X2,data=dat,x=TRUE,y=TRUE),
#'                "Cox.X1.X2"=coxph(Surv(time,status)~X1+X2,data=dat,x=TRUE,y=TRUE))
#' Models <- list("Cox.X1"=coxph(Surv(time,status)~X1,data=dat,x=TRUE,y=TRUE),
#'                "Cox.X2"=coxph(Surv(time,status)~X2,data=dat,x=TRUE,y=TRUE),
#'                "Cox.X1.X2"=coxph(Surv(time,status)~X1+X2,data=dat,x=TRUE,y=TRUE))
#' 
#' 
#' # compute the .632+ estimate of the generalization error 
#' set.seed(17100)
#' PredError.632plus <- pec(object=Models,
#'                          formula=Surv(time,status)~X1+X2,
#'                          data=dat,
#'                          exact=TRUE,
#'                          cens.model="marginal",
#'                          splitMethod="boot632plus",
#'                          B=5,
#'                          keep.matrix=TRUE,
#'                          verbose=TRUE)
#' 
#' # plot the .632+ estimates of the generalization error 
#' plot(PredError.632plus,xlim=c(0,30))
#' 
#' # plot the bootstrapped curves, .632+ estimates of the generalization error
#' # and Apparent error for the Cox model 'Cox.X1' with the 'Cox.X2' model
#' # as benchmark
#' plot(PredError.632plus,
#'      xlim=c(0,30),
#'      models="Cox.X1",
#'      special=TRUE,
#'      special.bench="Cox.X2",
#'      special.benchcol=2,
#'      special.addprederr="AppErr")
#' 
#'
##' @export
plot.pec <- function(x,
                     what,
                     models,
                     xlim=c(x$start,x$minmaxtime),
                     ylim=c(0,0.3),
                     xlab="Time",
                     ylab,
                     axes=TRUE,
                     col,
                     lty,
                     lwd,
                     type,
                     smooth=FALSE,
                     add.refline=FALSE,
                     add=FALSE,
                     legend=ifelse(add,FALSE,TRUE),
                     special=FALSE,
                     ...){
  # }}}
# {{{ backward compatibility 

  allArgs <- match.call()
  allArgs

  # }}}
  # {{{ find the estimate to be plotted
  if (missing(what)){
    ## backward compatibility
    if (match("what",names(allArgs),nomatch=0)){
      what <- eval(allArgs$what)
    }
    else{
      # for backward compability
      if (match("PredErr",names(x),nomatch=0))
        what <- "PredErr"
      else{
        what <- switch(x$splitMethod$internal.name,
                          "noPlan"="AppErr",
                          paste(x$splitMethod$internal.name,"Err",sep=""))
      }
    }
  }
  if (0==(match(what,names(x),nomatch=0)))
    stop("Estimate \"",what,"\" not found in object")
  # }}}
  # {{{ which models
  # backward compability
  if (missing(models))
    if (match("who",names(allArgs),nomatch=0))
      models <- eval(allArgs$who)
    else
      models <- 1:length(x$models)
  if(!is.numeric(models))
    models <- names(x$model)[match(models,names(x$models))]
  
  a  <- x$time >= xlim[1]
  b <- x$time <= xlim[2]
  at <- (a & b)
  X <- x$time[at]
  y <- do.call("cbind",x[[what]][models])[at,,drop=FALSE]
   if (length(y)==0) stop("No plotting values: check if x[[what]][models] is a list of numeric vectors.")
    uyps <- unlist(y)
    uyps <- uyps[!is.infinite(uyps)]
    max.y <- max(uyps,na.rm=T)
    ymax <- max(max.y,ylim[2])
    if (max.y>ylim[2])
      ylim <- if (what=="PredErr")
        c(0,ceiling(ymax*10)/10)
      else
        c(0,ceiling(max(unlist(y),na.rm=T)*10))/10
  
  # }}}
  # {{{ Check for missings 
  nfit <- ncol(y)
  if (missing(ylab)) ylab <- "Prediction error"
  if (missing(xlab)) xlab <- "Time"
  if (missing(col)) col <- 1:nfit
  if (missing(lty)) lty <- rep(1, nfit)
  if (missing(lwd)) lwd <- rep(2, nfit)
  if (length(col)< nfit) col <- rep(col, nfit)
  if (length(lty) < nfit) lty <- rep(lty, nfit)
  if (length(lwd) < nfit) lwd <- rep(lwd, nfit)
  if (missing(type))
      if (!x$exact || smooth) type <- "l" else type <- "s"
  # }}}  
  # {{{ creating arguments
  axis1.DefaultArgs <- list()
  axis2.DefaultArgs <- list()  
  plot.DefaultArgs <- list(x=0,
                           y=0,
                           type = "n",
                           ylim = ylim,
                           xlim = xlim,
                           xlab = xlab,
                           ylab = ylab)

  special.DefaultArgs <- list(x=x,
                              y=x[[what]],
                              addprederr=NULL,
                              models=models,
                              bench=FALSE,
                              benchcol=1,
                              times=X,
                              maxboot=NULL,
                              bootcol="gray77",
                              col=rep(1,4),
                              lty=1:4,
                              lwd=rep(2,4))  
  if (special)
      legend.DefaultArgs <- list(legend=NULL,lwd=NULL,col=NULL,lty=NULL,cex=1.5,bty="n",y.intersp=1,x=xlim[1],xjust=0,y=(ylim+.1*ylim)[2],yjust=1)
  else
      legend.DefaultArgs <- list(legend=if(is.numeric(models)) names(x$models)[models] else models,
                                 lwd=lwd,
                                 col=col,
                                 lty=lty,
                                 cex=1.5,
                                 bty="n",
                                 y.intersp=1,
                                 x=xlim[1],
                                 xjust=0,
                                 y=(ylim+.1*ylim)[2],
                                 yjust=1)
      
# }}}
# {{{ backward compatibility

  if (match("legend.args",names(args),nomatch=FALSE)){
      legend.DefaultArgs <- c(args[[match("legend.args",names(args),nomatch=FALSE)]],legend.DefaultArgs)
      legend.DefaultArgs <- legend.DefaultArgs[!duplicated(names(legend.DefaultArgs))]
  }
  if (match("special.args",names(args),nomatch=FALSE)){
      special.DefaultArgs <- c(args[[match("special.args",names(args),nomatch=FALSE)]],special.DefaultArgs)
      special.DefaultArgs <- special.DefaultArgs[!duplicated(names(special.DefaultArgs))]
  }
  smartA <- prodlim::SmartControl(call=list(...),
                                  keys=c("plot","special","legend","axis1","axis2"),
                                  defaults=list("plot"=plot.DefaultArgs,
                                      "special"=special.DefaultArgs,
                                      "legend"= legend.DefaultArgs,
                                      "axis1"=axis1.DefaultArgs,
                                      "axis2"=axis2.DefaultArgs),
                                  forced=list("plot"=list(axes=FALSE),
                                      "axis1"=list(side=1),
                                      "axis2"=list(side=2)),
                                  ignore.case=TRUE,
                                  ignore=c("what","who"),
                                  verbose=TRUE)
  

  # }}}
  # {{{ generating an empty plot
    if (!add) {
    do.call("plot",smartA$plot)
    if (axes){
      do.call("axis",smartA$axis1)
      do.call("axis",smartA$axis2)
    }
  }
# }}}
# {{{ adding the lines 
   
   if (special==TRUE){
     if (!(x$splitMethod$internal.name=="Boot632plus"||x$splitMethod$internal.name=="Boot632"))
       stop("Plotting method 'special' requires prediction error method 'Boot632plus' or 'Boot632'")
    if (is.null(x$call$keep.matrix))
      stop("Need keep.matrix")
     do.call("Special", smartA$special)
     }
   else{
    nlines <- ncol(y)
    nix <- lapply(1:nlines, function(s) {
      lines(x = X, y = y[,s], type = type, col = col[s], lty = lty[s], lwd = lwd[s])
    })
  }

  if (add.refline) abline(h=.25,lty=3,lwd=2,col=1)
# }}}
# {{{ legend - crappy solution to legend to the option special (but works)

if(legend==TRUE && !add && !is.null(names(x$models)[models])){
     save.xpd <- par()$xpd
     par(xpd=TRUE)

     # Not very elegant solution but works:
     if (special==TRUE){
       # nameModels
       if(is.numeric(models)) nameModels <- names(x$models)[smartA$special$models] else nameModels <- smartA$special$models
       #legend.legend:
       if (is.null(smartA$legend$legend))
         if (smartA$special$bench == FALSE)
           smartA$legend$legend <- c(paste(x$method$internal.name,"-",nameModels), paste(smartA$special$addprederr, "-", nameModels))
         else{
           if (is.numeric(smartA$special$bench))
             benchName <- names(x$models)[smartA$special$bench] else benchName <- smartA$special$bench 
           if (is.null(smartA$special$addprederr))
             smartA$legend$legend <- c(paste(x$splitMethod$internal.name,"-",c(benchName, nameModels)))
           else
             smartA$legend$legend <- c(paste(x$splitMethod$internal.name,"-",c(benchName, nameModels)), paste(smartA$special$addprederr, "-", nameModels))
         }
       # legend.col
       if (is.null(smartA$legend$col))
         if (smartA$special$bench == FALSE)
           smartA$legend$col <- smartA$special$col
         else
           smartA$legend$col <- c(smartA$special$benchcol,smartA$special$col)
       if (is.null(smartA$legend$lty))
         if (smartA$special$bench == FALSE)
           smartA$legend$lty <- smartA$special$lty
         else
           smartA$legend$lty <- c(1,smartA$special$lty)
       #legend.lwd
       if (is.null(smartA$legend$lwd))
         if (smartA$special$bench == FALSE)
           smartA$legend$lwd <- smartA$special$lwd
         else
           smartA$legend$lwd <- c(smartA$special$lwd[1],smartA$special$lwd)
       # run:
       do.call("legend",smartA$legend)
     }
     
      else
        do.call("legend",smartA$legend)
     par(xpd=save.xpd)
   }


# }}}  
# {{{ returning invisible and close out
   invisible(x)
}
# }}}

Try the pec package in your browser

Any scripts or data that you put into this service are public.

pec documentation built on April 11, 2023, 5:55 p.m.