Nothing
test_that("svmfs(DrHSVM) returns coherent model and predictions", {
skip_on_cran()
seed <- 123
n=200
train<-sim.data(n = n, ng = 100, nsg = 10, corr=FALSE, seed=seed )
print(str(train))
test<-sim.data(n = n, ng = 100, nsg = 10, corr=FALSE, seed=seed+1 )
print(str(test))
bounds=t(data.frame(log2lambda1=c(-10, 10)))
colnames(bounds)<-c("lower", "upper")
# computation intensive; for demostration reasons only for the first 100 features
# and only for 10 Iterations maxIter=10, default maxIter=700
print("start interval search")
suppressWarnings( fit<- svmfs(t(train$x)[,1:100], y=train$y,
fs.method="scad", bounds=bounds,
cross.outer= 0, grid.search = "interval", maxIter = 10,
inner.val.method = "cv", cross.inner= 5, maxevals=500,
seed=seed, parms.coding = "log2", show="none", verbose=FALSE ) )
expect_true(inherits(fit, "penSVM"))
f <- fit$model
expect_true(is.numeric(f$w))
expect_true(is.numeric(f$b) && length(f$b) == 1)
expect_true(is.numeric(f$xind) || is.integer(f$xind))
expect_true(length(f$w) == length(f$xind))
expect_true(all(f$xind >= 1 & f$xind <= ncol(test$x)))
pr<-predict.penSVM(fit, t(test$x)[,1:100], newdata.labels=test$y)
expect_type(pr, "list")
expect_equal(length(pr$pred.class), n)
expect_equal(length(as.vector(pr$fitted)), n)
})
test_that("svmfs(scad+L2) returns coherent model and predictions", {
skip_on_cran()
set.seed(33)
n <- 40; p <- 12
x <- matrix(rnorm(n * p), nrow = n, ncol = p)
colnames(x) <- paste0("G", seq_len(p))
y <- rep(c(-1, 1), each = n/2)
x[y == -1, 1] <- x[y == -1, 1] - 3.0
x[y == 1, 1] <- x[y == 1, 1] + 3.0
x[y == -1, 3] <- x[y == -1, 3] - 1.2
x[y == 1, 3] <- x[y == 1, 3] + 1.2
suppressWarnings(fit <- svmfs(
x, y,
fs.method = "scad+L2",
grid.search = "interval",
inner.val.method = "cv",
cross.inner = 3,
maxevals = 12,
show = "none",
seed = 33
))
expect_true(inherits(fit, "penSVM"))
f <- fit$model
expect_true(is.numeric(f$w))
expect_true(is.numeric(f$b) && length(f$b) == 1)
expect_true(is.numeric(f$xind) || is.integer(f$xind))
expect_true(length(f$w) == length(f$xind))
expect_true(all(f$xind >= 1 & f$xind <= ncol(x)))
pr <- predict(fit, x, newdata.labels = y)
expect_type(pr, "list")
expect_equal(length(pr$pred.class), n)
expect_equal(length(as.vector(pr$fitted)), n)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.