R/r2_nakagawa.R

Defines functions .bootstrap_r2_nakagawa .boot_r2_fun_lme4 .boot_r2_fun print.r2_nakagawa as.data.frame.r2_nakagawa r2_nakagawa

Documented in r2_nakagawa

#' @title Nakagawa's R2 for mixed models
#' @name r2_nakagawa
#'
#' @description Compute the _marginal_ and _conditional_ r-squared value for
#'  mixed effects models with complex random effects structures.
#'
#' @param model A mixed effects model.
#' @param by_group Logical, if `TRUE`, returns the explained variance
#'   at different levels (if there are multiple levels). This is essentially
#'   similar to the variance reduction approach by _Hox (2010), pp. 69-78_.
#' @param tolerance Tolerance for singularity check of random effects, to decide
#'   whether to compute random effect variances for the conditional r-squared
#'   or not. Indicates up to which value the convergence result is accepted. When
#'   `r2_nakagawa()` returns a warning, stating that random effect variances
#'   can't be computed (and thus, the conditional r-squared is `NA`),
#'   decrease the tolerance-level. See also [`check_singularity()`].
#' @inheritParams icc
#'
#' @return A list with the conditional and marginal R2 values.
#'
#' @section Supported models and model families:
#' The single variance components that are required to calculate the marginal
#' and conditional r-squared values are calculated using the [`insight::get_variance()`]
#' function. The results are validated against the solutions provided by
#' _Nakagawa et al. (2017)_, in particular examples shown in the Supplement 2
#' of the paper. Other model families are validated against results from the
#' **MuMIn** package. This means that the r-squared values returned by `r2_nakagawa()`
#' should be accurate and reliable for following mixed models or model families:
#'
#' - Bernoulli (logistic) regression
#' - Binomial regression (with other than binary outcomes)
#' - Poisson and Quasi-Poisson regression
#' - Negative binomial regression (including nbinom1, nbinom2 and nbinom12 families)
#' - Gaussian regression (linear models)
#' - Gamma regression
#' - Tweedie regression
#' - Beta regression
#' - Ordered beta regression
#'
#' Following model families are not yet validated, but should work:
#'
#' - Zero-inflated and hurdle models
#' - Beta-binomial regression
#' - Compound Poisson regression
#' - Generalized Poisson regression
#' - Log-normal regression
#' - Skew-normal regression
#'
#' Extracting variance components for models with zero-inflation part is not
#' straightforward, because it is not definitely clear how the distribution-specific
#' variance should be calculated. Therefore, it is recommended to carefully
#' inspect the results, and probably validate against other models, e.g. Bayesian
#' models (although results may be only roughly comparable).
#'
#' Log-normal regressions (e.g. `lognormal()` family in **glmmTMB** or `gaussian("log")`)
#' often have a very low fixed effects variance (if they were calculated as
#' suggested by _Nakagawa et al. 2017_). This results in very low ICC or
#' r-squared values, which may not be meaningful.
#'
#' @details
#' Marginal and conditional r-squared values for mixed models are calculated
#' based on _Nakagawa et al. (2017)_. For more details on the computation of
#' the variances, see [`insight::get_variance()`]. The random effect variances are
#' actually the mean random effect variances, thus the r-squared value is also
#' appropriate for mixed models with random slopes or nested random effects
#' (see _Johnson, 2014_).
#'
#' - **Conditional R2**: takes both the fixed and random effects into account.
#' - **Marginal R2**: considers only the variance of the fixed effects.
#'
#' The contribution of random effects can be deduced by subtracting the
#' marginal R2 from the conditional R2 or by computing the [`icc()`].
#'
#' @references
#'  - Hox, J. J. (2010). Multilevel analysis: techniques and applications
#'    (2nd ed). New York: Routledge.
#'  - Johnson, P. C. D. (2014). Extension of Nakagawa and Schielzeth’s R2 GLMM
#'    to random slopes models. Methods in Ecology and Evolution, 5(9), 944–946.
#'    \doi{10.1111/2041-210X.12225}
#'  - Nakagawa, S., and Schielzeth, H. (2013). A general and simple method for
#'    obtaining R2 from generalized linear mixed-effects models. Methods in
#'    Ecology and Evolution, 4(2), 133–142. \doi{10.1111/j.2041-210x.2012.00261.x}
#'  - Nakagawa, S., Johnson, P. C. D., and Schielzeth, H. (2017). The
#'    coefficient of determination R2 and intra-class correlation coefficient from
#'    generalized linear mixed-effects models revisited and expanded. Journal of
#'    The Royal Society Interface, 14(134), 20170213.
#'
#' @examplesIf require("lme4")
#' model <- lme4::lmer(Sepal.Length ~ Petal.Length + (1 | Species), data = iris)
#' r2_nakagawa(model)
#' r2_nakagawa(model, by_group = TRUE)
#' @export
r2_nakagawa <- function(model,
                        by_group = FALSE,
                        tolerance = 1e-8,
                        ci = NULL,
                        iterations = 100,
                        ci_method = NULL,
                        null_model = NULL,
                        approximation = "lognormal",
                        model_component = NULL,
                        verbose = TRUE,
                        ...) {
  # calculate random effect variances
  vars <- .compute_random_vars(
    model,
    tolerance,
    components = c("var.fixed", "var.residual"),
    null_model = null_model,
    approximation = approximation,
    name_fun = "r2()",
    name_full = "r-squared",
    model_component = model_component,
    verbose = verbose
  )

  # return if R2 couldn't be computed
  if (is.null(vars) || all(is.na(vars))) {
    return(vars)
  }

  # compute R2 by group
  if (isTRUE(by_group)) {
    # with random slopes, explained variance is inaccurate
    if (!is.null(insight::find_random_slopes(model)) && verbose) {
      insight::format_warning("Model contains random slopes. Explained variance by levels is not accurate.")
    }

    if (!is.null(ci) && !is.na(ci) && verbose) {
      insight::format_warning("Confidence intervals are not yet supported for `by_group = TRUE`.")
    }

    # null-model
    if (is.null(null_model)) {
      null_model <- insight::null_model(
        model,
        verbose = isTRUE(getOption("easystats_errors", FALSE))
      )
    }
    vars_null <- insight::get_variance(
      null_model,
      tolerance = tolerance,
      verbose = isTRUE(getOption("easystats_errors", FALSE))
    )

    # names of group levels
    group_names <- insight::find_random(model, split_nested = TRUE, flatten = TRUE)

    # compute r2 by level
    r2_random <- 1 - (vars$var.intercept[group_names] / vars_null$var.intercept[group_names])
    r2_fixed <- 1 - (vars$var.residual / vars_null$var.residual)

    out <- data.frame(
      Level = c("Level 1", group_names),
      R2 = c(r2_fixed, r2_random),
      stringsAsFactors = FALSE
    )

    class(out) <- c("r2_nakagawa_by_group", "data.frame")
  } else {
    # Calculate R2 values
    if (insight::is_empty_object(vars$var.random) || is.na(vars$var.random)) {
      if (verbose) {
        # if no random effect variance, return simple R2
        insight::print_color("Random effect variances not available. Returned R2 does not account for random effects.\n", "red") # nolint
      }
      r2_marginal <- vars$var.fixed / (vars$var.fixed + vars$var.residual)
      r2_conditional <- NA
    } else {
      r2_marginal <- vars$var.fixed / (vars$var.fixed + vars$var.random + vars$var.residual)
      r2_conditional <- (vars$var.fixed + vars$var.random) / (vars$var.fixed + vars$var.random + vars$var.residual)
    }

    names(r2_conditional) <- "Conditional R2"
    names(r2_marginal) <- "Marginal R2"
    out <- list(R2_conditional = r2_conditional, R2_marginal = r2_marginal)

    # check if CIs are requested, and compute bootstrapped CIs
    if (!is.null(ci) && !is.na(ci)) {
      # this is experimental!
      if (identical(ci_method, "analytical")) {
        result <- .safe(.analytical_icc_ci(model, ci, fun = "r2_nakagawa"))
        if (is.null(result)) {
          r2_ci_marginal <- r2_ci_conditional <- NA
        } else {
          r2_ci_marginal <- result$R2_marginal
          r2_ci_conditional <- result$R2_conditional
        }
      } else {
        result <- .bootstrap_r2_nakagawa(model, iterations, tolerance, ci_method, ...)
        # CI for marginal R2
        r2_ci_marginal <- as.vector(result$t[, 1])
        r2_ci_marginal <- r2_ci_marginal[!is.na(r2_ci_marginal)]
        # validation check
        if (length(r2_ci_marginal) > 0) {
          r2_ci_marginal <- bayestestR::eti(r2_ci_marginal, ci = ci)
        } else {
          r2_ci_marginal <- NA
        }

        # CI for unadjusted R2
        r2_ci_conditional <- as.vector(result$t[, 2])
        r2_ci_conditional <- r2_ci_conditional[!is.na(r2_ci_conditional)]
        # validation check
        if (length(r2_ci_conditional) > 0) {
          r2_ci_conditional <- bayestestR::eti(r2_ci_conditional, ci = ci)
        } else {
          r2_ci_conditional <- NA
        }

        if ((all(is.na(r2_ci_marginal)) || all(is.na(r2_ci_conditional))) && verbose) {
          insight::format_warning(
            "Could not compute confidence intervals for R2. Try `ci_method = \"simple\"."
          )
        }
      }

      out$R2_marginal <- c(
        out$R2_marginal,
        CI_low = r2_ci_marginal$CI_low,
        CI_high = r2_ci_marginal$CI_high
      )
      out$R2_conditional <- c(
        out$R2_conditional,
        CI_low = r2_ci_conditional$CI_low,
        CI_high = r2_ci_conditional$CI_high
      )

      attr(out, "ci") <- ci
    }

    class(out) <- c("r2_nakagawa", "list")
  }
  out
}



# methods ------

#' @export
as.data.frame.r2_nakagawa <- function(x, row.names = NULL, optional = FALSE, ...) {
  data.frame(
    R2_conditional = x$R2_conditional,
    R2_marginal = x$R2_marginal,
    stringsAsFactors = FALSE,
    row.names = row.names,
    optional = optional,
    ...
  )
}


#' @export
print.r2_nakagawa <- function(x, digits = 3, ...) {
  model_type <- attr(x, "model_type")
  if (is.null(model_type)) {
    insight::print_color("# R2 for Mixed Models\n\n", "blue")
  } else {
    insight::print_color("# R2 for %s Regression\n\n", "blue")
  }

  out <- c(
    sprintf("  Conditional R2: %.*f", digits, x$R2_conditional[1]),
    sprintf("     Marginal R2: %.*f", digits, x$R2_marginal[1])
  )

  # add CI
  if (length(x$R2_conditional) == 3) {
    out[1] <- .add_r2_ci_to_print(out[1], x$R2_conditional[2], x$R2_conditional[3], digits = digits)
  }
  if (length(x$R2_marginal) == 3) {
    out[2] <- .add_r2_ci_to_print(out[2], x$R2_marginal[2], x$R2_marginal[3], digits = digits)
  }

  # separate lines for multiple R2
  out <- paste(out, collapse = "\n")

  cat(out)
  cat("\n")
  invisible(x)
}



# bootstrapping --------------

# bootstrapping using package "boot"
.boot_r2_fun <- function(data, indices, model, tolerance) {
  d <- data[indices, ] # allows boot to select sample
  fit <- suppressWarnings(suppressMessages(stats::update(model, data = d)))
  vars <- .compute_random_vars(
    fit,
    tolerance,
    verbose = isTRUE(getOption("easystats_errors", FALSE))
  )
  if (is.null(vars) || all(is.na(vars))) {
    return(c(NA, NA))
  }
  # Calculate R2 values
  if (insight::is_empty_object(vars$var.random) || is.na(vars$var.random)) {
    c(vars$var.fixed / (vars$var.fixed + vars$var.residual), NA)
  } else {
    c(
      vars$var.fixed / (vars$var.fixed + vars$var.random + vars$var.residual),
      (vars$var.fixed + vars$var.random) / (vars$var.fixed + vars$var.random + vars$var.residual)
    )
  }
}

# bootstrapping using "lme4::bootMer"
.boot_r2_fun_lme4 <- function(model) {
  vars <- .compute_random_vars(
    model,
    tolerance = 1e-10,
    verbose = isTRUE(getOption("easystats_errors", FALSE))
  )
  if (is.null(vars) || all(is.na(vars))) {
    return(c(NA, NA))
  }
  # Calculate R2 values
  if (insight::is_empty_object(vars$var.random) || is.na(vars$var.random)) {
    c(vars$var.fixed / (vars$var.fixed + vars$var.residual), NA)
  } else {
    c(
      vars$var.fixed / (vars$var.fixed + vars$var.random + vars$var.residual),
      (vars$var.fixed + vars$var.random) / (vars$var.fixed + vars$var.random + vars$var.residual)
    )
  }
}

# main bootstrap function
.bootstrap_r2_nakagawa <- function(model, iterations, tolerance, ci_method = NULL, ...) {
  if (inherits(model, c("merMod", "lmerMod", "glmmTMB")) && !identical(ci_method, "boot")) {
    result <- .do_lme4_bootmer(
      model,
      .boot_r2_fun_lme4,
      iterations,
      dots = list(...)
    )
  } else {
    insight::check_if_installed("boot")
    result <- boot::boot(
      data = insight::get_data(model, verbose = FALSE),
      statistic = .boot_r2_fun,
      R = iterations,
      sim = "ordinary",
      model = model,
      tolerance = tolerance
    )
  }
  result
}

Try the performance package in your browser

Any scripts or data that you put into this service are public.

performance documentation built on Oct. 19, 2024, 1:07 a.m.