Nothing
#' Calculate (phylogenetic) evenness: examine assemblage composition
#' and abundance
#'
#' As described in Pearse et al. (2014), an evenness metric is one the
#' examines the phylogenetic structure of species present in each
#' assemblage, taking into account their abundances. For completeness,
#' options are provided to calculate these metrics using species
#' traits.
#'
#' Most of these metrics do not involve comparison with some kind of
#' evolutionary-derived expectation for phylogenetic shape. Those that
#' do, however, such as PSE, make no sense unless applied to a
#' phylogenetic distance matrix - their null expectation *requires*
#' it. Using square-rooted distance matrices, or distance matrices
#' that incorporate trait information, can be an excellent thing to
#' do, but (for the above reasons), \code{pez} won't give you an
#' answer for metrics for which WDP thinks it makes no
#' sense. \code{pae}, \code{iac}, \code{haead} & \code{eaed} can
#' (...up to you whether you should!...) be used with a square-rooted
#' distance matrix, but the results *will always be wrong* if you do
#' not have an ultrametric tree (branch lengths proportional to time)
#' and you will be warned about this. WDP strongly feels you should
#' only be using ultrametric phylogenies in any case, but code to fix
#' this bug is welcome.
#' @param data \code{\link{comparative.comm}} object
#' @param sqrt.phy If TRUE (default is FALSE) your phylogenetic
#' distance matrix will be square-rooted; specifying TRUE will force
#' the square-root transformation on phylogenetic distance matrices
#' (in the spirit of Leitten and Cornwell, 2014). See `details' for
#' details about different metric calculations when a distance
#' matrix is used.
#' @param traitgram If not NULL (default), a number to be passed to
#' \code{funct.phylo.dist} (\code{phyloWeight}; the `a' parameter),
#' causing analysis on a distance matrix reflecting both traits and
#' phylogeny (0-->only phylogeny, 1--> only traits; see
#' \code{funct.phylo.dist}). If a vector of numbers is given,
#' \code{pez.eveness} iterates across them and returns a
#' \code{data.frame} with coefficients from each iteration. See
#' `details' for details about different metric calculations when a
#' distance matrix is used.
#' @param traitgram.p A value for `p' to be used in conjunction with
#' \code{traitgram} when calling \code{funct.phylo.dist}.
#' @param ext.dist Supply an external species-level distance matrix
#' for use in calculations. See `details' for comments on the use of
#' distance matrices in different metric calculations.
#' @param quick Only calculate metrics which are quick to calculate
#' (default: TRUE); setting to FALSE will also calculate
#' \code{fd.dist} and the Pagel transformations (lambda, delta,
#' kappa).
#' @param q value for \emph{q} in \code{scheiner} (default 1)
#' @note As mentioned above, \code{dist.fd} is calculated using a
#' phylogenetic distance matrix if no trait data are available, or
#' if you specify \code{sqrt.phy}. It is not calculated by default
#' because it generates warning messsages (which WDP is loathe to
#' suppress) which are related to the general tendency for a low
#' rank of phylogenetic distance matrices. Much ink has been written
#' about this, and in par this problem is why the \code{eigen.sum}
#' measure came to be suggested.
#'
#' Some of these metrics can cause (inconsequential) warnings if given
#' assemblages with only one species/individual in them, and return
#' NA/NaN values depending on the metric. I consider these `features',
#' not bugs.
#'
#' Some of the metrics in this wrapper are also in
#' \code{\link{pez.shape}}; such metrics can be calculated using
#' species' abundances (making them \emph{evenness}) metrics or simply
#' using presence/absence of species (making them \emph{shape}
#' metrics).
#' @return \code{phy.structure} list object of metric values. Use
#' \code{coefs} to extract a summary metric table, or examine each
#' individual metric (which gives more details for each) by calling
#' \code{print} on the output (i.e., type \code{output} in the example
#' below).
#' @author M.R. Helmus, Will Pearse
#' @seealso pez.shape pez.dispersion pez.dissimilarity
#' @references Pearse W.D., Purvis A., Cavender-Bares J. & Helmus
#' M.R. (2014). Metrics and Models of Community Phylogenetics. In:
#' Modern Phylogenetic Comparative Methods and Their Application in
#' Evolutionary Biology. Springer Berlin Heidelberg, pp. 451-464.
#' @references \code{pse} Helmus M.R., Bland T.J., Williams C.K. &
#' Ives A.R. (2007). Phylogenetic measures of biodiversity. American
#' Naturalist, 169, E68-E83.
#' @references Pearse W.D., Purvis A., Cavender-Bares J. & Helmus
#' M.R. (2014). Metrics and Models of Community Phylogenetics. In:
#' Modern Phylogenetic Comparative Methods and Their Application in
#' Evolutionary Biology. Springer Berlin Heidelberg, pp. 451-464.
#' @references \code{pse} Helmus M.R., Bland T.J., Williams C.K. &
#' Ives A.R. (2007). Phylogenetic measures of biodiversity. American
#' Naturalist, 169, E68-E83.
#' @references \code{rao} Webb C.O. (2000). Exploring the phylogenetic
#' structure of ecological communities: An example for rain forest
#' trees. American Naturalist, 156, 145-155.
#' @references \code{taxon} Clarke K.R. & Warwick R.M. (1998). A
#' taxonomic distinctness index and its statistical
#' properties. J. Appl. Ecol., 35, 523-531.
#' @references \code{entropy} Allen B., Kon M. & Bar-Yam Y. (2009). A
#' New Phylogenetic Diversity Measure Generalizing the Shannon Index
#' and Its Application to Phyllostomid Bats. The American Naturalist,
#' 174, 236-243.
#' @references \code{pae,iac,haed,eaed} Cadotte M.W., Davies T.J.,
#' Regetz J., Kembel S.W., Cleland E. & Oakley
#' T.H. (2010). Phylogenetic diversity metrics for ecological
#' communities: integrating species richness, abundance and
#' evolutionary history. Ecology Letters, 13, 96-105.
#' @references \code{lambda,delta,kappa} Mark Pagel (1999) Inferring
#' the historical patterns of biological evolution. Nature 6756(401):
#' 877--884.
#' @references \code{innd,mipd} Ness J.H., Rollinson E.J. & Whitney
#' K.D. (2011). Phylogenetic distance can predict susceptibility to
#' attack by natural enemies. Oikos, 120, 1327-1334.
#' @references \code{scheiner} Scheiner, S.M. (20120). A metric of
#' biodiversity that integrates abundance, phylogeny, and function.
#' Oikos, 121, 1191-1202.
#' @examples
#' data(laja)
#' data <- comparative.comm(invert.tree, river.sites, invert.traits)
#' pez.evenness(data)
#' @importFrom ape cophenetic.phylo drop.tip is.ultrametric as.phylo
#' @importFrom picante pse raoD
#' @importFrom vegan taxondive
#' @importFrom caper comparative.data pgls summary.pgls coef.pgls
#' @importFrom ade4 newick2phylog
#' @importFrom FD dbFD
#' @importFrom stats coef cophenetic hclust as.dist
#' @importFrom utils capture.output
#' @export
pez.evenness <- function(data, sqrt.phy=FALSE, traitgram=NULL, traitgram.p=2, ext.dist=NULL, quick=TRUE, q=1)
{
#Assertions and argument handling
if(!inherits(data, "comparative.comm")) stop("'data' must be a comparative community ecology object")
if(sum(c(!is.null(traitgram), sqrt.phy, !is.null(ext.dist))) > 1)
stop("Confusion now hath made its masterpiece!\nYou have specified more than one thing to do with a distance matrix.")
if(!is.null(traitgram)){
if(length(traitgram) > 1){
output <- vector("list", length(traitgram))
for(i in seq_along(output))
output[[i]] <- cbind(Recall(data, sqrt.phy, traitgram=traitgram[i], traitgram.p=traitgram.p, q=q), traitgram[i], sites(data))
output <- do.call(rbind, output)
names(output)[ncol(output)-1] <- "traitgram"
names(output)[ncol(output)] <- "site"
rownames(output) <- NULL
return(output)
} else {
dist <- as.matrix(funct.phylo.dist(data, traitgram, traitgram.p))
traitgram <- TRUE
}
} else traitgram <- FALSE
if(!is.null(ext.dist)){
dist <- .check.ext.dist(ext.dist, species(data), ncol(data$comm))
ext.dist <- TRUE
} else ext.dist <- FALSE
#Setup
SR <- rowSums(data$comm>0)
nsite <- nrow(data$comm)
nspp <- ncol(data$comm)
coefs <- data.frame(row.names=rownames(data$comm))
if(sqrt.phy)
data <- .sqrt.phy(data)
if(traitgram==FALSE & ext.dist==FALSE)
dist <- cophenetic(data$phy)
#Remove missing species
#dist <- dist[colSums(data$comm)>0, colSums(data$comm)>0]
#data <- data[,colSums(data$comm)>0]
#Filter metrics according to suitability and calculate
functions <- setNames(c(.rao, .phylo.entropy, .pae, .iac, .haed, .eaed, .lambda, .delta, .kappa, .mpd, .mntd, .vpd, .mntd, .mipd, .innd, .taxon, .pse, .dist.fd, .scheiner), c("rao", "entropy", "pae", "iac", "haed", "eaed", "lambda", "delta", "kappa", "mpd", "mntd", "vpd", "vntd", "mipd", "innd", "taxon", "pse", "dist.fd", "scheiner"))
if(quick == TRUE)
functions <- functions[!names(functions) %in% c("dist.fd","lambda","delta","kappa")]
if(sqrt.phy == TRUE)
functions <- functions[!names(functions) %in% c("pse","lambda","delta","kappa")]
if(traitgram == TRUE)
functions <- functions[!names(functions) %in% c("pse", "entropy", "iac", "haed", "lambda", "delta", "kappa", "rao", "scheiner")]
if(ext.dist == TRUE)
functions <- functions[!names(functions) %in% c("pse", "rao", "entropy", "pae", "iac", "haed", "eaed", "lambda", "delta", "kappa", "scheiner")]
output <- lapply(functions, function(x) try(x(data, dist=dist, abundance.weighted=TRUE, q=q), silent=TRUE))
#Clean up output and return
output <- Filter(function(x) !inherits(x, "try-error"), output)
output <- do.call(cbind, output)
return(as.data.frame(output))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.