| Tagloss_fit | R Documentation |
This function fits a model of tag loss using a CMR database.
The names of parameters can be:
Model Pfaller et al. (2019):
D1_L2, D2D1_L2, D3D2_L2, A_L2, B_L2, C_L2, delta_L2
D1_R2, D2D1_R2, D3D2_R2, A_R2, B_R2, C_R2, delta_R2
D1_L1, D2D1_L1, D3D2_L1, A_L1, B_L1, C_L1, delta_L1
D1_R1, D2D1_R1, D3D2_R1, A_R1, B_R1, C_R1, delta_R1
D1_2, D2D1_2, D3D2_2, A_2, B_2, C_2, delta_2
D1_1, D2D1_1, D3D2_1, A_1, B_1, C_1, delta_1
pA, pB and pC are the daily probabilities of tag loss with
pA=-logit(A), pB=-logit(B) and pC=-logit(C) .
delta is used as: p = p + delta. Nothe that delta can be negative
Tag loss rate is pA at day 1
Tag loss rate changes gradually from pA to pB that is reached at day D1
Tag loss rate is pB from day D1 to day D2=D1+D2D1
Tag loss rate changes gradually from pB to pC that is reached at day D3=D2+D3D2
When parameters from Rivalan et al. (2005) are used:
a0_2, a1_2, a2_2, a3_2, a4_2, delta_2
a0_1, a1_1, a2_1, a3_1, a4_1, delta_1
When parameters from Casale et al. (2017) are used:
Model I
CasaleModelIc_2
CasaleModelIc_1
Model II
CasaleModelIIa0_2, CasaleModelIIa1_2, CasaleModelIIa4_2
CasaleModelIIa0_1, CasaleModelIIa1_1, CasaleModelIIa4_1
Model III
CasaleModelIIIa0_2, CasaleModelIIIa1_2, CasaleModelIIIa4_2
CasaleModelIIIa0_1, CasaleModelIIIa1_1, CasaleModelIIIa4_1
Model IV
CasaleModelIVa0_2, CasaleModelIVa1_2, CasaleModelIVa2_2, CasaleModelIVa3_2, CasaleModelIVa4_2
CasaleModelIVa0_1, CasaleModelIVa1_1, CasaleModelIVa2_1, CasaleModelIVa3_1, CasaleModelIVa4_1
Model V
CasaleModelVa0_2, CasaleModelVa1_2, CasaleModelVa2_2, CasaleModelVa3_2, CasaleModelVa4_2
CasaleModelVa0_1, CasaleModelVa1_1, CasaleModelVa2_1, CasaleModelVa3_1, CasaleModelVa4_1
If only one parameter is fitted, method must be "Brent" and upper and lower
parameters must be set up with finite values.
model_before can be ""par['a0_1']=par['a0_2'];par['a1_1']=par['a1_2']". model_after can be "p1=p2"
Tagloss_fit(
data = stop("A database formated using Tagloss_format() must be used"),
fitted.parameters = NULL,
fixed.parameters = NULL,
model_before = NULL,
model_after = NULL,
control = list(trace = 1, maxit = 10000),
method = "Nelder-Mead",
lower = -Inf,
upper = Inf,
hessian = FALSE,
mc.cores = detectCores(all.tests = FALSE, logical = TRUE),
groups = NULL
)
data |
An object formated using Tagloss_format |
fitted.parameters |
Set of parameters to be fitted |
fixed.parameters |
Set of fixed parameters |
model_before |
Transformation of parameters before to use Tagloss_model() |
model_after |
Transformation of parameters after to use Tagloss_model() |
control |
Control parameters to be send to optim() |
method |
optim() method |
lower |
Lower value for parameter when Brent method is used |
upper |
Upper value for parameter when Brent method is used |
hessian |
Does the hessian matrix should be estimated |
mc.cores |
Number of cores to use for parallel computing |
groups |
Number of groups for parallel computing |
Tagloss_fit fits a model of tag loss using a CMR database.
Return a list object with the model describing tag loss.
Marc Girondot marc.girondot@gmail.com
Rivalan, P., Godfrey, M.H., Prévot-Julliard, A.-C., Girondot, M., 2005. Maximum likelihood estimates of tag loss in leatherback sea turtles. Journal of Wildlife Management 69, 540-548.
Casale, P., Freggi, D., Salvemini, P., 2017. Tag loss is a minor limiting factor in sea turtle tagging programs relying on distant tag returns: the case of Mediterranean loggerhead sea turtles. European Journal of Wildlife Research 63.
Pfaller JB, Williams KL, Frick MG, Shamblin BM, Nairn CJ, Girondot M (2019) Genetic determination of tag loss dynamics in nesting loggerhead turtles: A new chapter in “the tag loss problem”. Marine Biology 166: 97 doi 10.1007/s00227-019-3545-x
Other Model of Tag-loss:
Tagloss_L(),
Tagloss_LengthObs(),
Tagloss_cumul(),
Tagloss_daymax(),
Tagloss_format(),
Tagloss_mcmc(),
Tagloss_mcmc_p(),
Tagloss_model(),
Tagloss_simulate(),
logLik.Tagloss(),
o_4p_p1p2,
plot.Tagloss(),
plot.TaglossData()
## Not run:
library(phenology)
# Example
data_f_21 <- Tagloss_format(outLR, model="21")
# model fitted by Rivalan et al. 2005
par <- c(a0_2=-5.43E-2, a1_2=-103.52, a4_2=5.62E-4,
delta_1=3.2E-4)
pfixed <- c(a2_2=0, a3_2=0, a2_1=0, a3_1=0)
model_before <- "par['a0_1']=par['a0_2'];par['a1_1']=par['a1_2'];par['a4_1']=par['a4_2']"
o <- Tagloss_fit(data=data_f_21, fitted.parameters=par, fixed.parameters=pfixed,
model_before=model_before)
plot(o, t=1:1000, model="cumul")
plot(o, t=1:1000, model="1")
plot(o, t=1:1000, model="2", add=TRUE, col="red")
# Same data fitted with new model
par <- c(D1_1 = 100.15324837975547, A_1 = 5.9576927964120188,
B_1 = 8.769924225871069, B_2 = 8.2353860179664125)
pfixed <- c(D2D1_1 = 2568, D3D2_1 = 2568, D2D1_2 = 2568, D3D2_2 = 2568)
o_4p_p1p2 <- Tagloss_fit(data=data_f_21, fitted.parameters = par,
fixed.parameters = pfixed,
model_before = "par['C_1']=par['B_1'];
par['A_2']=par['A_1'];
par['C_2']=par['B_2'];
par['D1_2']=par['D1_1']", hessian=TRUE)
# Without the N20 the computing is much faster
data_f_21_fast <- subset(data_f_21, subset=(is.na(data_f_21$N20)))
par <- c('D1_2' = 49.78891736351531,
'D2D1_2' = 1059.3635769732305,
'D3D2_2' = 12.434313273804602,
'A_2' = 5.2238379144659683,
'B_2' = 8.0050044071275543,
'C_2' = 8.4317863609499675,
'D1_1' = 701.80273287212935,
'D2D1_1' = 0.010951749100596819,
'D3D2_1' = 3773.6290607434876,
'A_1' = 205.42435592344776,
'B_1' = 9.9598342503239863,
'C_1' = 6.7234868237164722)
o <- Tagloss_fit(data=data_f_21_fast, fitted.parameters=par, hessian = TRUE)
plot(o, model="1", col="red")
plot(o, model="2", col="blue", add=TRUE)
legend("topright", legend=c("2->1", "1->0"), lty=1, col=c("blue", "red"))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.