Tagloss_fit | R Documentation |
This function fits a model of tag loss using a CMR database.
The names of parameters can be:
Model Pfaller et al. (2019):
D1_L2
, D2D1_L2
, D3D2_L2
, A_L2
, B_L2
, C_L2
, delta_L2
D1_R2
, D2D1_R2
, D3D2_R2
, A_R2
, B_R2
, C_R2
, delta_R2
D1_L1
, D2D1_L1
, D3D2_L1
, A_L1
, B_L1
, C_L1
, delta_L1
D1_R1
, D2D1_R1
, D3D2_R1
, A_R1
, B_R1
, C_R1
, delta_R1
D1_2
, D2D1_2
, D3D2_2
, A_2
, B_2
, C_2
, delta_2
D1_1
, D2D1_1
, D3D2_1
, A_1
, B_1
, C_1
, delta_1
pA
, pB
and pC
are the daily probabilities of tag loss with
pA=-logit(A)
, pB=-logit(B)
and pC=-logit(C)
.
delta
is used as: p = p + delta
. Nothe that delta
can be negative
Tag loss rate is pA
at day 1
Tag loss rate changes gradually from pA
to pB
that is reached at day D1
Tag loss rate is pB
from day D1
to day D2=D1+D2D1
Tag loss rate changes gradually from pB
to pC
that is reached at day D3=D2+D3D2
When parameters from Rivalan et al. (2005) are used:
a0_2
, a1_2
, a2_2
, a3_2
, a4_2
, delta_2
a0_1
, a1_1
, a2_1
, a3_1
, a4_1
, delta_1
When parameters from Casale et al. (2017) are used:
Model I
CasaleModelIc_2
CasaleModelIc_1
Model II
CasaleModelIIa0_2
, CasaleModelIIa1_2
, CasaleModelIIa4_2
CasaleModelIIa0_1
, CasaleModelIIa1_1
, CasaleModelIIa4_1
Model III
CasaleModelIIIa0_2
, CasaleModelIIIa1_2
, CasaleModelIIIa4_2
CasaleModelIIIa0_1
, CasaleModelIIIa1_1
, CasaleModelIIIa4_1
Model IV
CasaleModelIVa0_2
, CasaleModelIVa1_2
, CasaleModelIVa2_2
, CasaleModelIVa3_2
, CasaleModelIVa4_2
CasaleModelIVa0_1
, CasaleModelIVa1_1
, CasaleModelIVa2_1
, CasaleModelIVa3_1
, CasaleModelIVa4_1
Model V
CasaleModelVa0_2
, CasaleModelVa1_2
, CasaleModelVa2_2
, CasaleModelVa3_2
, CasaleModelVa4_2
CasaleModelVa0_1
, CasaleModelVa1_1
, CasaleModelVa2_1
, CasaleModelVa3_1
, CasaleModelVa4_1
If only one parameter is fitted, method must be "Brent" and upper
and lower
parameters must be set up with finite values.
model_before can be ""par['a0_1']=par['a0_2'];par['a1_1']=par['a1_2']". model_after can be "p1=p2"
Tagloss_fit(
data = stop("A database formated using Tagloss_format() must be used"),
fitted.parameters = NULL,
fixed.parameters = NULL,
model_before = NULL,
model_after = NULL,
control = list(trace = 1, maxit = 10000),
method = "Nelder-Mead",
lower = -Inf,
upper = Inf,
hessian = FALSE,
mc.cores = detectCores(all.tests = FALSE, logical = TRUE),
groups = NULL
)
data |
An object formated using Tagloss_format |
fitted.parameters |
Set of parameters to be fitted |
fixed.parameters |
Set of fixed parameters |
model_before |
Transformation of parameters before to use Tagloss_model() |
model_after |
Transformation of parameters after to use Tagloss_model() |
control |
Control parameters to be send to optim() |
method |
optim() method |
lower |
Lower value for parameter when Brent method is used |
upper |
Upper value for parameter when Brent method is used |
hessian |
Does the hessian matrix should be estimated |
mc.cores |
Number of cores to use for parallel computing |
groups |
Number of groups for parallel computing |
Tagloss_fit fits a model of tag loss using a CMR database.
Return a list object with the model describing tag loss.
Marc Girondot marc.girondot@gmail.com
Rivalan, P., Godfrey, M.H., Prévot-Julliard, A.-C., Girondot, M., 2005. Maximum likelihood estimates of tag loss in leatherback sea turtles. Journal of Wildlife Management 69, 540-548.
Casale, P., Freggi, D., Salvemini, P., 2017. Tag loss is a minor limiting factor in sea turtle tagging programs relying on distant tag returns: the case of Mediterranean loggerhead sea turtles. European Journal of Wildlife Research 63.
Pfaller JB, Williams KL, Frick MG, Shamblin BM, Nairn CJ, Girondot M (2019) Genetic determination of tag loss dynamics in nesting loggerhead turtles: A new chapter in “the tag loss problem”. Marine Biology 166: 97 doi 10.1007/s00227-019-3545-x
Other Model of Tag-loss:
Tagloss_L()
,
Tagloss_LengthObs()
,
Tagloss_cumul()
,
Tagloss_daymax()
,
Tagloss_format()
,
Tagloss_mcmc()
,
Tagloss_mcmc_p()
,
Tagloss_model()
,
Tagloss_simulate()
,
logLik.Tagloss()
,
o_4p_p1p2
,
plot.Tagloss()
,
plot.TaglossData()
## Not run:
library(phenology)
# Example
data_f_21 <- Tagloss_format(outLR, model="21")
# model fitted by Rivalan et al. 2005
par <- c(a0_2=-5.43E-2, a1_2=-103.52, a4_2=5.62E-4,
delta_1=3.2E-4)
pfixed <- c(a2_2=0, a3_2=0, a2_1=0, a3_1=0)
model_before <- "par['a0_1']=par['a0_2'];par['a1_1']=par['a1_2'];par['a4_1']=par['a4_2']"
o <- Tagloss_fit(data=data_f_21, fitted.parameters=par, fixed.parameters=pfixed,
model_before=model_before)
plot(o, t=1:1000, model="cumul")
plot(o, t=1:1000, model="1")
plot(o, t=1:1000, model="2", add=TRUE, col="red")
# Same data fitted with new model
par <- c(D1_1 = 100.15324837975547, A_1 = 5.9576927964120188,
B_1 = 8.769924225871069, B_2 = 8.2353860179664125)
pfixed <- c(D2D1_1 = 2568, D3D2_1 = 2568, D2D1_2 = 2568, D3D2_2 = 2568)
o_4p_p1p2 <- Tagloss_fit(data=data_f_21, fitted.parameters = par,
fixed.parameters = pfixed,
model_before = "par['C_1']=par['B_1'];
par['A_2']=par['A_1'];
par['C_2']=par['B_2'];
par['D1_2']=par['D1_1']", hessian=TRUE)
# Without the N20 the computing is much faster
data_f_21_fast <- subset(data_f_21, subset=(is.na(data_f_21$N20)))
par <- c('D1_2' = 49.78891736351531,
'D2D1_2' = 1059.3635769732305,
'D3D2_2' = 12.434313273804602,
'A_2' = 5.2238379144659683,
'B_2' = 8.0050044071275543,
'C_2' = 8.4317863609499675,
'D1_1' = 701.80273287212935,
'D2D1_1' = 0.010951749100596819,
'D3D2_1' = 3773.6290607434876,
'A_1' = 205.42435592344776,
'B_1' = 9.9598342503239863,
'C_1' = 6.7234868237164722)
o <- Tagloss_fit(data=data_f_21_fast, fitted.parameters=par, hessian = TRUE)
plot(o, model="1", col="red")
plot(o, model="2", col="blue", add=TRUE)
legend("topright", legend=c("2->1", "1->0"), lty=1, col=c("blue", "red"))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.