View source: R/plot.phenologymap.R
plot.phenologymap | R Documentation |
This function plots a likelihood map obtained after map_phenology.
## S3 method for class 'phenologymap'
plot(x, ..., col = heat.colors(128), xlab = "Phi", ylab = "Delta")
x |
A map generated with map_phenology. |
... |
not used |
col |
Colors could be heat.colors(128) or rainbow(64) or col=gray(c(seq(0, 1, length.out=128))) |
xlab |
Label for x axis |
ylab |
Label for y axis |
plot.phenologymap plots a likelihood map with Delta and Phi varying.
Return None
Marc Girondot
Other Phenology model:
AutoFitPhenology()
,
BE_to_LBLE()
,
Gratiot
,
LBLE_to_BE()
,
LBLE_to_L()
,
L_to_LBLE()
,
MarineTurtles_2002
,
MinBMinE_to_Min()
,
adapt_parameters()
,
add_SE()
,
add_phenology()
,
extract_result()
,
fit_phenology()
,
likelihood_phenology()
,
logLik.phenology()
,
map_Gratiot
,
map_phenology()
,
par_init()
,
phenology()
,
phenology2fitRMU()
,
phenology_MHmcmc()
,
phenology_MHmcmc_p()
,
plot.phenology()
,
plot_delta()
,
plot_phi()
,
print.phenology()
,
print.phenologymap()
,
print.phenologyout()
,
remove_site()
,
result_Gratiot
,
result_Gratiot1
,
result_Gratiot2
,
result_Gratiot_Flat
,
result_Gratiot_mcmc
,
summary.phenology()
,
summary.phenologymap()
,
summary.phenologyout()
## Not run:
library("phenology")
# Read a file with data
data(Gratiot)
# Generate a formatted list nammed data_Gratiot
data_Gratiot<-add_phenology(Gratiot, name="Complete",
reference=as.Date("2001-01-01"), format="%d/%m/%Y")
# Generate initial points for the optimisation
parg<-par_init(data_Gratiot, fixed.parameters=NULL)
# Run the optimisation
result_Gratiot<-fit_phenology(data=data_Gratiot,
fitted.parameters=parg, fixed.parameters=NULL)
data(result_Gratiot)
# Extract the fitted parameters
parg1<-extract_result(result_Gratiot)
# Add constant Alpha and Tau values
# [day d amplitude=(Alpha+Nd*Beta)^Tau with Nd being the number of counts for day d]
pfixed<-c(parg1, Alpha=0, Tau=1)
pfixed<-pfixed[-which(names(pfixed)=="Theta")]
# The only fitted parameter will be Beta
parg2<-c(Beta=0.5, parg1["Theta"])
# Generate a likelihood map
# [default Phi=seq(from=0.1, to=20, length.out=100) but it is very long]
# Take care, it takes 20 hours ! The data map_Gratiot has the result
map_Gratiot<-map_phenology(data=data_Gratiot,
Phi=seq(from=0.1, to=20, length.out=100),
fitted.parameters=parg2, fixed.parameters=pfixed)
data(map_Gratiot)
# Plot the map
plot(map_Gratiot, col=heat.colors(128))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.