Plot the best likelihood for fixed Phi value.

Description

The function "plot_phi" plots the best likelihood for each Phi value.

Usage

1
plot_phi(map = NULL, ...)

Arguments

map

A map generated with map_phenology

...

Parameters for plot

Details

plot_phi plots the best likelihood for fixed Phi value.

Value

Return None

Author(s)

Marc Girondot

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
library("phenology")
# Read a file with data
## Not run: 
Gratiot<-read.delim("http://max2.ese.u-psud.fr/epc/conservation/BI/Complete.txt", header=FALSE)

## End(Not run)
data(Gratiot)
# Generate a formatted list nammed data_Gratiot 
data_Gratiot<-add_phenology(Gratiot, name="Complete", 
		reference=as.Date("2001-01-01"), format="%d/%m/%Y")
# Generate initial points for the optimisation
parg<-par_init(data_Gratiot, parametersfixed=NULL)
# Run the optimisation
## Not run: 
result_Gratiot<-fit_phenology(data=data_Gratiot, 
		parametersfit=parg, parametersfixed=NULL, trace=1)

## End(Not run)
data(result_Gratiot)
# Extract the fitted parameters
parg1<-extract_result(result_Gratiot)
# Add constant Alpha and Tau values 
# [day d amplitude=(Alpha+Nd*Beta)^Tau with Nd being the number of counts for day d]
pfixed<-c(parg1, Alpha=0, Tau=1)
pfixed<-pfixed[-which(names(pfixed)=="Theta")]
# The only fitted parameter will be Beta
parg2<-c(Beta=0.5, parg1["Theta"])
# Generate a likelihood map [default Phi=seq(from=0.1, to=20, length.out=100) but it is very long]
# Take care, it takes 20 hours ! The data map_Gratiot has the result
## Not run: 
map_Gratiot<-map_phenology(data=data_Gratiot, 
		Phi=seq(from=0.1, to=20, length.out=100), 
		parametersfit=parg2, parametersfixed=pfixed)

## End(Not run)
data(map_Gratiot)
# Plot the min(-Ln L) for Phi varying at any delta value
plot_phi(map=map_Gratiot)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.