View source: R/summary.phenology.R
| summary.phenology | R Documentation | 
The function summary.phenology shows result and estimates confidence interval.
If several years are analyzed, the sum_synthesis result can be obtained only if there is
not a mix of bisextile and non-bisextile years.
If save.all is true, it will return a object $save.all as an array with dimensions:
c("without_obs_ML", "with_obs_ML", "without_obs_MCMC", "with_obs_MCMC"), 
series, 
replicates
The replicates dimension will be the max of replicate.CI.mcmc and replicate.CI. If
they are not equal, NA will be present for the missing replicates. See examples.
## S3 method for class 'phenology'
summary(
  object,
  resultmcmc = NULL,
  season = NULL,
  chain = 1,
  series = "all",
  replicate.CI.mcmc = "all",
  replicate.CI = 10000,
  level = 0.95,
  print = TRUE,
  save.all = FALSE,
  ...
)
| object | A result file generated by fit_phenology | 
| resultmcmc | A mcmc object | 
| season | The number of season to analyze | 
| chain | The number of chain to be used in resultmcmc | 
| series | Names of the series to be analyzed or "all" | 
| replicate.CI.mcmc | Number of iterations to be used or "all" | 
| replicate.CI | Number of replicates for ML resampling | 
| level | Level to estimate confidence interval or credibility interval | 
| print | Should information be shown | 
| save.all | If TRUE, returns all the values for replicates | 
| ... | Not used | 
summary.phenology prints the information from a result object.
A list with five objects: synthesis is a data.frame with global estimate of nesting.
details_MCMC, details_ML, details_mean are lists with day by day information for each series, and
sum_synthesis is the synthesis of the sum of all analyzed time-series.
Marc Girondot marc.girondot@gmail.com
Other Phenology model: 
AutoFitPhenology(),
BE_to_LBLE(),
Gratiot,
LBLE_to_BE(),
LBLE_to_L(),
L_to_LBLE(),
MarineTurtles_2002,
MinBMinE_to_Min(),
adapt_parameters(),
add_SE(),
add_phenology(),
extract_result(),
fit_phenology(),
likelihood_phenology(),
logLik.phenology(),
map_Gratiot,
map_phenology(),
par_init(),
phenology(),
phenology2fitRMU(),
phenology_MHmcmc(),
phenology_MHmcmc_p(),
plot.phenology(),
plot.phenologymap(),
plot_delta(),
plot_phi(),
print.phenology(),
print.phenologymap(),
print.phenologyout(),
remove_site(),
result_Gratiot,
result_Gratiot1,
result_Gratiot2,
result_Gratiot_Flat,
summary.phenologymap(),
summary.phenologyout()
## Not run: 
library(phenology)
# Read a file with data
data(Gratiot)
# Generate a formatted list nammed data_Gratiot 
data_Gratiot<-add_phenology(Gratiot, name="Complete", 
		reference=as.Date("2001-01-01"), format="%d/%m/%Y")
# Generate initial points for the optimisation
parg<-par_init(data_Gratiot, fixed.parameters=NULL)
# Run the optimisation
result_Gratiot<-fit_phenology(data=data_Gratiot, 
		fitted.parameters=parg, fixed.parameters=NULL)
data(result_Gratiot)
# Display information from the result
s <- summary(result_Gratiot)
# Using mcmc
s <- summary(object=result_Gratiot, resultmcmc=result_Gratiot_mcmc)
sa <- summary(object=result_Gratiot, resultmcmc=result_Gratiot_mcmc, save.all = TRUE)
hist(sa$save.all["with_obs_MCMC", "Complete", ])
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.