Nothing
#' Evaluate if the rasters generated in the function fits on available memory
#'
#' @description
#' Tests if the amount of RAM required is available to process a SpatRaster
#'
#' @inheritParams terra::mem_info
#'
#' @return logical
#' @keywords internal
.fit.memory <- function(x, n=1){
# x rasters will be generated in this function, let's see if there is enough
# memory in the user's pc
sink(nullfile()) # suppress output
mi <- terra::mem_info(x, n)[5] != 0 # proc in memory = T TRUE means that it
# fits in the pc's memory, so you wouldn't have to use temporary files
sink()
return(mi)
}
#' Calculate species richness for raster data
#'
#' @description Calculate the species richness for raster data.
#'
#' @usage rast.sr(x, filename = "", ...)
#'
#' @param x SpatRaster. A SpatRaster containing presence-absence data (0 or 1)
#' for a set of species.
#' @param filename character. Output filename.
#' @param ... additional arguments to be passed passed down from a calling
#' function.
#'
#' @author Gabriela Alves Ferreira and Neander Marcel Heming
#' @return SpatRaster
#' @export
#' @examples
#' \donttest{
#' x <- terra::rast(system.file("extdata", "rast.presab.tif",
#' package="phyloraster"))
#' rse <- phyloraster::rast.sr(x)
#' terra::plot(rse)
#' }
rast.sr <- function(x, filename = "", ...){
if(!terra::is.lonlat(x)){
stop("Geographic coordinates are needed for the calculations.")
}
# richness
rsr <- terra::app(x, sum, na.rm = T, filename = filename, ...)
names(rsr) <- "SR"
return(rsr)
}
#' Calculate phylogenetic community metrics for raster data
#'
#' Calculate species richness, phylogenetic diversity, evolutionary
#' distinctiveness,
#' phylogenetic endemism and weighted endemism using rasters as input
#'
#' @param x SpatRaster. A SpatRaster containing presence-absence data (0 or 1)
#' for a set of species. The layers (species) must be sorted according to the
#' tree order. See the phylo.pres function.
#' @param inv.R SpatRaster. inverse of range size calculated from
#' \code{\link{inv.range}}
#' @param branch.length numeric. A named numerical vector containing the branch
#' length for each species.
#' @param n.descen numeric. A Named numeric vector of number of descendants for
#' each branch
#'
#' @inheritParams geo.phylo
#'
#' @return SpatRaster with one layer for each metric
#'
#' @details Community metrics calculated:
#' \itemize{
##' \item{Phylogenetic diversity (Faith 1992)}
##' \item{Species Richness}
##' \item{Evolutionary distinctiveness by fair-proportion
##' (Isaac et al. 2007)}
##' \item{Phylogenetic endemism (Rosauer et al. 2009)}
##' \item{Weighted endemism (Crisp et al. 2001, Williams et al. 1994)}
##'}
#'
#' @author Neander Marcel Heming
#'
#' @references Rosauer, D. A. N., Laffan, S. W., Crisp, M. D., Donnellan, S. C.
#' and Cook, L. G. (2009). Phylogenetic endemism: a new approach for identifying
#' geographical concentrations of evolutionary history.
#' Molecular ecology, 18(19),
#' 4061-4072.
#' @references Faith, D. P. (1992). Conservation evaluation and phylogenetic
#' diversity. Biological conservation, 61(1), 1-10.
#' @references Williams, P.H., Humphries, C.J., Forey, P.L., Humphries, C.J. and
#' VaneWright, R.I. (1994). Biodiversity, taxonomic relatedness, and endemism in
#' conservation. In: Systematics and Conservation Evaluation (eds Forey PL,
#' Humphries C.J., Vane-Wright RI), p. 438. Oxford University Press, Oxford.
#' @references Crisp, M., Laffan, S., Linder, H. and Monro, A. (2001). Endemism
#' in the Australian flora. Journal of Biogeography, 28, 183–198.
#' @references Isaac, N. J., Turvey, S. T., Collen, B., Waterman, C. and
#' Baillie, J. E. (2007). Mammals on the EDGE: conservation priorities based on
#' threat and phylogeny. PLoS ONE 2, e296.
#' @references Laffan, S. W., Rosauer, D. F., Di Virgilio, G., Miller, J. T.,
#' González‐Orozco, C. E., Knerr, N., ... & Mishler, B. D. (2016).
#' Range‐weighted metrics of species and phylogenetic turnover can better
#' resolve biogeographic transition zones. Methods in Ecology and Evolution,
#' 7(5), 580-588.
#'
#' @keywords internal
.rast.geo.phylo <- function(x,
inv.R,
edge.path, branch.length, n.descen,
# spp_seq, spp_seqrange.BL, spp_seqINV,
# resu = stats::setNames(as.double(rep(NA, 5)),
#c("SR", "PD", "ED", "PE", "WE")),
filename = "", ...){
mi <- .fit.memory(x, 1) ## proc in memory = TRUE means that it fits in the
# pc's memory, so you wouldn't have to use temporary files
# temporary files
temp <- paste0(tempfile(), 1:5, "g.tif") # to store the xe raster
geop <- terra::rast(list(rast.sr(x,
overwrite=TRUE, filename =
ifelse(mi, "", temp[1])), # SR
.rast.pd.B(x, edge.path, branch.length,
overwrite=TRUE, filename =
ifelse(mi, "", temp[2])), # PD
.rast.ed.B(x, edge.path, branch.length, n.descen,
overwrite=TRUE, filename =
ifelse(mi, "", temp[3])), # ED
.rast.pe.B(x, inv.R, branch.length,
metric = "pe",
overwrite=TRUE, filename =
ifelse(mi, "", temp[4])), # PE
.rast.we.B(x, inv.R,
overwrite=TRUE, filename =
ifelse(mi, "", temp[5])) # WE
))
if(filename != ""){
geop <- terra::writeRaster(geop, filename, ...)
}
unlink(temp)
return(geop)
}
#' Calculate phylogenetic community metrics for raster data
#'
#' Calculate species richness, phylogenetic diversity, evolutionary
#' distinctiveness,
#' phylogenetic endemism and weighted endemism using rasters as input.
#'
#' @param x SpatRaster. A SpatRaster containing presence-absence data (0 or 1)
#' for a set of species. The layers (species) will be sorted according to the
#' tree order. See the phylo.pres function.
#'
#' @inheritParams phylo.pres
#' @param inv.R SpatRaster. Inverse of range size. See \code{\link{inv.range}}
#' @param edge.path matrix. Matrix representing the paths through the tree from
#' root to each tip. See \code{\link{phylo.pres}}
#' @param branch.length numeric. A Named numeric vector of branch length for
#' each species. See \code{\link{phylo.pres}}
#' @param n.descen numeric. A Named numeric vector of number of descendants for
#' each branch. See \code{\link{phylo.pres}}
#' @inheritParams terra::app
#' @param ... additional arguments passed for terra::app
#'
#' @return SpatRaster with one layer for each metric
#'
#' @details Community metrics calculated:
#' \itemize{
##' \item{Phylogenetic diversity (Faith 1992)}
##' \item{Species Richness}
##' \item{Evolutionary distinctiveness by fair-proportion
##' (Isaac et al. 2007)}
##' \item{Phylogenetic endemism (Rosauer et al. 2009)}
##' \item{Weighted endemism (Crisp et al. 2001, Williams et al. 1994)}
##'}
#'
#' @seealso \code{\link{phylo.pres}}, \code{\link{inv.range}},
#' \code{\link{rast.ed}}, \code{\link{rast.pd}},
#' \code{\link{rast.we}}, \code{\link{rast.pe}}, \code{\link{rast.sr}},
#' \code{\link{geo.phylo.ses}},
#'
#' @author Neander Marcel Heming
#'
#' @references Rosauer, D. A. N., Laffan, S. W., Crisp, M. D., Donnellan, S. C.
#' and Cook, L. G. (2009). Phylogenetic endemism: a new approach for identifying
#' geographical concentrations of evolutionary history. Molecular ecology,
#' 18(19), 4061-4072.
#' @references Faith, D. P. (1992). Conservation evaluation and phylogenetic
#' diversity. Biological conservation, 61(1), 1-10.
#' @references Williams, P.H., Humphries, C.J., Forey, P.L., Humphries, C.J.
#' and VaneWright, R.I. (1994). Biodiversity, taxonomic relatedness, and
#' endemism in conservation. In: Systematics and Conservation Evaluation
#' (eds Forey PL, Humphries C.J., Vane-Wright RI), p. 438. Oxford University
#' Press, Oxford.
#' @references Crisp, M., Laffan, S., Linder, H. and Monro, A. (2001).
#' Endemism in the Australian flora. Journal of Biogeography, 28, 183–198.
#' @references Isaac, N. J., Turvey, S. T., Collen, B., Waterman, C. and
#' Baillie, J. E. (2007). Mammals on the EDGE: conservation priorities based on
#' threat and phylogeny. PLoS ONE 2, e296.
#' @references Laffan, S. W., Rosauer, D. F., Di Virgilio, G., Miller, J. T.,
#' González‐Orozco, C. E., Knerr, N., ... & Mishler, B. D. (2016).
#' Range‐weighted metrics of species and phylogenetic turnover can better
#' resolve biogeographic transition zones. Methods in Ecology and Evolution,
#' 7(5), 580-588.
#'
#' @examples
#' \donttest{
#' library(terra)
#' library(phyloraster)
#' x <- terra::rast(system.file("extdata", "rast.presab.tif",
#' package="phyloraster"))[[1:10]]
#' tree <- ape::read.tree(system.file("extdata", "tree.nex",
#' package="phyloraster"))
#' data <- phylo.pres(x, tree)
#' inv.R <- inv.range(data$x)
#' t <- geo.phylo(data$x, inv.R = inv.R, edge.path = data$edge.path,
#' branch.length = data$branch.length, n.descen = data$n.descendants)
#' terra::plot(t)
#' }
#' @export
geo.phylo <- function(x, tree,
inv.R, edge.path, branch.length, n.descen,
full_tree_metr = TRUE,
filename = "", ...){
## object checks
if(!terra::is.lonlat(x)){
stop("Geographic coordinates are needed for the calculations.")
}
### initial argument check
{
miss4 <- arg.check(match.call(), c("inv.R", "branch.length", "n.descen"))
miss.tree <- arg.check(match.call(), "tree")
if(any(miss4) & miss.tree){
stop("Either argument 'tree' or all 'inv.R',
'edge.path', 'branch.length',
and 'n.descen' need to be supplied")
} else if(any(miss4)){
data <- phylo.pres(x, tree, full_tree_metr = full_tree_metr)
x <- data$x
inv.R <- inv.range(x)
edge.path <- data$edge.path
branch.length <- data$branch.length
n.descen <- data$n.descendants
} else if(any(isFALSE(identical(names(x), names(inv.R))) #,
# isFALSE(identical(names(x), names(branch.length))),
# isFALSE(identical(names(x), names(n.descen)))
)) {
data <- phylo.pres(x, tree, full_tree_metr = full_tree_metr)
x <- data$x
inv.R <- inv.range(x)
edge.path <- data$edge.path
branch.length <- data$branch.length
n.descen <- data$n.descendants
}
}
## vectorization setup
resu <- stats::setNames(rep(NA, 5), c("SR", "PD", "ED", "PE", "WE"))
## run function
.rast.geo.phylo(x,
inv.R = inv.R,
edge.path = edge.path,
branch.length = branch.length,
n.descen = n.descen,
resu = resu,
filename = filename, ...)
}
#' Calculate phylogenetic community metrics and their standardized effect sizes
#' for raster data
#'
#' @description Calculates the standardized effect size for phylogenetic
#' community metrics. See Details for more information.
#'
#' @inheritParams geo.phylo
#' @inheritParams SESraster::SESraster
#' @inheritParams phylo.pres
#'
#' @details The dependency ‘SESraster’ is used to calculate the null models.
#' This package currently implements six algorithms to randomize binary species
#' distribution with several levels of constraints:
#' SIM1, SIM2, SIM3, SIM5, SIM6 and SIM9 (sensu Gotelli 2000).
#' The methods implemented in ‘SESraster’ are based on how species
#' (originally rows) and sites (originally columns) are treated
#' (i.e. fixed, equiprobable, or proportional sums) (Gotelli 2000).
#' By default, the ‘phyloraster’ uses the function bootspat_ str() from the
#' ‘SESraster’ package to conduct the randomizations, but the user is free
#' to choose any of the other methods mentioned above through the spat_alg
#' argument in the *.ses() functions of the ‘phyloraster’ package.
#' The bootspat_str() is equivalent to the SIM5 (proportional-fixed) method of
#' Gotelli (2000), which partially relaxes the spatial structure of species
#' distributions, but keeps the spatial structure of the observed richness
#' pattern across cells.
#'
#' @seealso \code{\link{phylo.pres}},
#' \code{\link{inv.range}},
#' \code{\link{geo.phylo}},
#' \code{\link{rast.ed.ses}},
#' \code{\link{rast.pd.ses}},
#' \code{\link{rast.we.ses}},
#' \code{\link{rast.pe.ses}},
#' \code{\link[SESraster]{bootspat_str}},
#' \code{\link[SESraster]{bootspat_naive}},
#' \code{\link[SESraster]{bootspat_ff}},
#' \code{\link[SESraster]{SESraster}}
#'
#' @return SpatRaster. The function returns the observed value of the metric,
#' the mean of the simulations calculated over n times, the standard deviation
#' of the simulations, the standardized effect size (SES) for the metric,
#' and the p-values.
#'
#' @details The dependency ‘SESraster’ is used to calculate the null models.
#' This package currently implements six algorithms to randomize binary species
#' distribution with several levels of constraints:
#' SIM1, SIM2, SIM3, SIM5, SIM6 and SIM9 (sensu Gotelli 2000).
#' The methods implemented in ‘SESraster’ are based on how species
#' (originally rows) and sites (originally columns) are treated
#' (i.e. fixed, equiprobable, or proportional sums) (Gotelli 2000).
#' By default, the ‘phyloraster’ uses the function bootspat_ str() from the
#' ‘SESraster’ package to conduct the randomizations, but the user is free
#' to choose any of the other methods mentioned above through the spat_alg
#' argument in the *.ses() functions of the ‘phyloraster’ package.
#' The bootspat_str() is equivalent to the SIM5 (proportional-fixed) method of
#' Gotelli (2000), which partially relaxes the spatial structure of species
#' distributions, but keeps the spatial structure of the observed richness
#' pattern across cells.
#'
#' @references Gotelli, N. J. 2000.
#' Null model analysis of species co-occurrence patterns. –
#' Ecology 81: 2606–2621.
#' @references Heming, N. M., Mota, F. M. M. and Alves-Ferreira, G. 2023.
#' SESraster: raster randomization for null hypothesis testing.
#' https://CRAN.R-project.org/package=SESraster.
#'
#' @author Neander Marcel Heming
#'
#' @examples
#' \donttest{
#' library(terra)
#' library(phyloraster)
#' require("SESraster")
#' x <- terra::rast(system.file("extdata", "rast.presab.tif",
#' package="phyloraster"))
#' tree <- ape::read.tree(system.file("extdata", "tree.nex",
#' package="phyloraster"))
#' tses <- geo.phylo.ses(x = x,
#' tree = tree,
#' spat_alg = "bootspat_str",
#' spat_alg_args = list(rprob = NULL,
#' rich = NULL,
#' fr_prob = NULL),
#' aleats = 2)
#' terra::plot(tses)
#' }
#' @export
geo.phylo.ses <- function(x, tree,
inv.R, edge.path, branch.length, n.descen,
full_tree_metr = TRUE,
spat_alg = "bootspat_str",
spat_alg_args = list(rprob = NULL,
rich = NULL,
fr_prob = NULL),
aleats = 10,
cores = 1, filename = "", ...){
## object checks
if(!terra::is.lonlat(x)){
stop("Geographic coordinates are needed for the calculations.")
}
### initial argument check
{
miss4 <- arg.check(match.call(), c("inv.R", "branch.length", "n.descen"))
miss.tree <- arg.check(match.call(), "tree")
if(any(miss4) & miss.tree){
stop("Either argument 'tree' or all 'inv.R', 'edge.path', 'branch.length',
and 'n.descen' need to be supplied")
} else if(any(miss4)){
data <- phylo.pres(x, tree, full_tree_metr = full_tree_metr)
x <- data$x
inv.R <- inv.range(x)
edge.path <- data$edge.path
branch.length <- data$branch.length
n.descen <- data$n.descendants
} else if(any(isFALSE(identical(names(x), names(inv.R))) #,
# isFALSE(identical(names(x), names(branch.length))),
# isFALSE(identical(names(x), names(n.descen)))
)) {
data <- phylo.pres(x, tree, full_tree_metr = full_tree_metr)
x <- data$x
inv.R <- inv.range(x)
edge.path <- data$edge.path
branch.length <- data$branch.length
n.descen <- data$n.descendants
}
}
requireNamespace("SESraster")
## vectorization setup
resu <- stats::setNames(rep(NA, 5), c("SR", "PD", "ED", "PE", "WE"))
## function arguments
FUN_args <- list(inv.R = inv.R,
edge.path = edge.path,
branch.length = branch.length,
n.descen = n.descen,
resu = resu,
cores = cores)
ses <- SESraster::SESraster(x,
FUN = ".rast.geo.phylo",
FUN_args = FUN_args,
# Fa_sample = "branch.length",
# Fa_alg = "sample",
# Fa_alg_args = list(replace=FALSE),
# spat_alg = NULL, spat_alg_args = list(),
spat_alg = spat_alg,
spat_alg_args = spat_alg_args,
aleats = aleats,
cores = cores, filename = filename, ...)
return(ses)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.