Description Usage Arguments Details Value Author(s) See Also Examples
This function computes the probability of responding in a specific category for one or more items for a given set of theta values when the items are from a mixed-format test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | mixed(x, cat, poly.mod, theta, dimensions = 1, items, information = FALSE, angle, ...)
## S4 method for signature 'numeric', 'numeric'
mixed(x, cat, poly.mod, theta, dimensions, items, information, angle, ...)
## S4 method for signature 'matrix', 'numeric'
mixed(x, cat, poly.mod, theta, dimensions, items, information, angle, ...)
## S4 method for signature 'data.frame', 'numeric'
mixed(x, cat, poly.mod, theta, dimensions, items, information, angle, ...)
## S4 method for signature 'list', 'numeric'
mixed(x, cat, poly.mod, theta, dimensions, items, information, angle, ...)
## S4 method for signature 'irt.pars', 'ANY'
mixed(x, cat, poly.mod, theta, dimensions, items, information, angle, ...)
## S4 method for signature 'sep.pars', 'ANY'
mixed(x, cat, poly.mod, theta, dimensions, items, information, angle, ...)
|
x |
an |
cat |
vector identifying the number of response categories for each item. If
multiple-choice model items are included, |
poly.mod |
object of class |
theta |
vector, matrix, or list of theta values for which probabilities will be computed.
If |
dimensions |
number of modeled dimensions |
items |
numeric vector identifying the items for which probabilities should be computed |
information |
logical value. If |
angle |
vector or matrix of angles between the dimension 1 axis and the corresponding axes for each
of the other dimensions for which information will be computed. When there are more than two dimensions
and |
... |
further arguments passed to or from other methods. See details below. |
The item parameters supplied to this method can be associated with a single IRT model or
multiple models. When the parameters are tied to only one model, the format of x
(for either unidimensional or multidimensional models) should follow the conventions in
drm
for dichotomous response models (i.e. 1PL, 2PL, 3PL), gpcm
for the partial credit model and generalized partial credit model, grm
for
the graded response model, mcm
for the multiple-choice model, and
nrm
for the nominal response model. When the parameters are associated with
two or more models, the parameters should be combined. See as.irt.pars
or
for more details on how the parameters from different models can be combined. Additional
arguments for the above models can be passed to this method as well.
theta
can be specified as a vector, matrix, or list. For the unidimensional case, theta
should be a vector. If a matrix or list of values is supplied, they will be converted to a single vector
of theta values. For the multidimensional case, if a vector of values is supplied it will be assumed
that this same set of values should be used for each dimension. Probabilities will be computed for each
combination of theta values. Similarly, if a list is supplied, probabilities will be computed for each
combination of theta values. In instances where probabilities are desired for specific combinations of
theta values, a j x m matrix should be specified for j ability points and m dimensions where the columns
are ordered from dimension 1 to m.
The mixed
function essentially compiles response probabilities computed using the functions
drm
, grm
, gpcm
, nrm
, and mcm
for the associated models
respectively. All of the arguments specified in any one of these functions can be passed to
mixed
as an additional argument. For example, the argument incorrect
can be passed
to drm
and catprob
can be passed to grm
. In the functions drm
, grm
,
and gpcm
there is an argument D
for the value of a scaling constant. In mixed
,
a single argument D
can be passed that will be applied to all applicable models, or arguments
D.drm
, D.grm
, and D.gpcm
can be specified for each model respectively. If an
argument is specified for D
and, say D.drm
, the values for D.grm
and D.gpcm
(if applicable) will be set equal to D
. If only D.drm
is specified, the values for
D.grm
and D.gpcm
(if applicable) will be set to 1.
Returns an object of class irt.prob
Jonathan P. Weeks weeksjp@gmail.com
plot:
plot item characteristic/category curves
irt.prob
, irt.pars
, sep.pars:
classes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | ###### Unidimensional Examples ######
# Compute probabilities for three dichotomous (3PL) items and two
# polytomous (gpcm) items without a location parameter
dichot <- matrix(c(1.2, .8, .9, 2.3, -1.1, -.2, .24, .19, .13),3,3)
poly <- matrix(c(.64, -1.8, -.73, .45, NA, .88, .06, 1.4, 1.9, 2.6),
2,5,byrow=TRUE)
pars <- rbind(cbind(dichot,matrix(NA,3,2)),poly)
cat <- c(2,2,2,4,5)
pm <- as.poly.mod(5, c("drm","gpcm"), list(1:3,4:5))
x <- mixed(pars, cat, pm)
plot(x)
# Specify a different scaling constant for the GPCM items in the
# above example
x <- mixed(pars, cat, pm, D.gpcm=1.7)
plot(x)
# Compute probabilities for three dichotomous (3PL) items, four
# polytomous items, two gpcm items and two nrm items. Include a
# location parameter for the gpcm items
a <- matrix(c(
1.2, rep(NA,4),
.8, rep(NA,4),
.9, rep(NA,4),
.64, rep(NA,4),
.88, rep(NA,4),
.905, .522, -.469, -.959, NA,
.828, .375, -.357, -.079, -.817),7,5,byrow=TRUE)
b <- matrix(c(
2.3, rep(NA,4),
-1.1, rep(NA,4),
-.2, rep(NA,4),
-.69, -1.11, -.04, 1.14, NA,
1.49, -1.43, -.09, .41, 1.11,
.126, -.206, -.257, .336, NA,
.565, .865, -1.186, -1.199, .993),7,5,byrow=TRUE)
c <- c(.14, .19, .26, rep(NA,4))
pars <- list(a,b,c)
cat <- c(2,2,2,4,5,4,5)
pm <- as.poly.mod(7, c("drm","gpcm","nrm"), list(1:3,4:5,6:7))
x <- mixed(pars, cat, pm, location=TRUE)
plot(x)
###### Multidimensional Example ######
# Compute response probabilities for four dichotomous items
# modeled using the M2PL and three polytomous items modeled
# using the multidimensional graded response model. For the
# later items, cumulative probabilities are computed.
a <- matrix(c(1.66,1.72,.69,.19,.88,1.12,.68,1.21,
.873, .226, .516, .380, .613, .286 ),7,2,byrow=TRUE)
d <- matrix(c(-.38,NA,NA,NA,NA,
-.68,NA,NA,NA,NA,
-.91,NA,NA,NA,NA,
-1.08,NA,NA,NA,NA,
2.255, 1.334, -.503, -2.051, -3.082,
1.917, 1.074, -.497, -1.521, -2.589,
1.624, .994, -.656, -1.978, NA),7,5,byrow=TRUE)
cat <- c(2,2,2,2,6,6,5)
pars <- cbind(a,d)
pm <- as.poly.mod(7,c("drm","grm"),list(1:4,5:7))
x <- mixed(pars, cat, pm, dimensions=2, catprob=TRUE)
plot(x)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.