Description Usage Arguments Details Value Methods Author(s) References See Also Examples
This function computes the cumulative probability of responding within or above a certain category or the probability of responding in a specific category for one or more items for a given set of theta values using the graded response model or multidimensional graded response model.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | grm(x, cat, theta, dimensions = 1, catprob = FALSE, D = 1,
location = FALSE, items, information = FALSE, angle, ...)
## S4 method for signature 'matrix', 'numeric'
grm(x, cat, theta, dimensions, catprob, D, location, items, information, angle, ...)
## S4 method for signature 'data.frame', 'numeric'
grm(x, cat, theta, dimensions, catprob, D, location, items, information, angle, ...)
## S4 method for signature 'list', 'numeric'
grm(x, cat, theta, dimensions, catprob, D, location, items, information, angle, ...)
## S4 method for signature 'irt.pars', 'ANY'
grm(x, cat, theta, dimensions, catprob, D, location, items, information, angle, ...)
## S4 method for signature 'sep.pars', 'ANY'
grm(x, cat, theta, dimensions, catprob, D, location, items, information, angle, ...)
|
x |
ans |
cat |
vector identifying the number of response categories (not the number of threshold parameters) for each item. |
theta |
vector, matrix, or list of theta values for which probabilities will be computed.
If |
dimensions |
number of modeled dimensions |
catprob |
if |
D |
scaling constant. The default value assumes that the parameters are already in the desired metric. If the parameters are in the logistic metric, they can be transformed to a normal metric by setting D = 1.7 |
location |
if |
items |
numeric vector identifying the items for which probabilities should be computed |
information |
logical value. If |
angle |
vector or matrix of angles between the dimension 1 axis and the corresponding axes for each
of the other dimensions for which information will be computed. When there are more than two dimensions
and |
... |
further arguments passed to or from other methods |
theta
can be specified as a vector, matrix, or list. For the unidimensional case, theta
should be a vector. If a matrix or list of values is supplied, they will be converted to a single vector
of theta values. For the multidimensional case, if a vector of values is supplied it will be assumed
that this same set of values should be used for each dimension. Probabilities will be computed for each
combination of theta values. Similarly, if a list is supplied, probabilities will be computed for each
combination of theta values. In instances where probabilities are desired for specific combinations of
theta values, a j x m matrix should be specified for j ability points and m dimensions where the columns
are ordered from dimension 1 to m.
Returns an object of class irt.prob
This method allows one to specify an n x k matrix for n items. The number of columns can vary depending on the number of dimensions and whether a location parameter is included. The first m columns, for m dimensions, are for item slopes and the remaining columns are for the threshold/threshold deviation parameters.
Threshold parameters can be characterized in two ways: the actual thresholds or
deviations from an overall item difficulty (location). In the deviation scenario the
location
argument should be TRUE
and the location parameters should be
in the m+1 column. The columns for the threshold/threshold deviation parameters
will always follow the slope column(s) and, if applicable, the location column. The number
of threshold/threshold deviation parameters can vary for each item. In these instances,
all cells with missing values should be filled with NA
s. For example, for a
unidimensional model with no location parameter, if one item has five categories (four
threshold parameters) and another item has three categories (two threshold parameters),
there should be five columns. The first column includes the slope parameters and columns
2-5 include the threshold parameters. The values in the last two columns for the item with
three categories should be NA
.
See the method for x = "matrix"
This method is for a list with two elements. The first
list element is for item slopes and the second for the threshold/threshold deviation
parameters. For the unidimensional case, the slope values should be a vector of length n
or an n x 1 matrix for n items. For the multidimensional case, the slopes should be
specified in an n x m matrix. For both the unidimensional and multidimensional cases,
the threshold/threshold deviation parameters should be formatted as an n x k matrix. If
the thresholds are deviations from a location parameter, the argument location
should be TRUE
and the location parameters should be in the first column. The
number of threshold/threshold deviation parameters can vary for each item. In these
instances, all cells with missing values should be filled with NA
s (See the
example in the method for x = "matrix").
This method can be used to compute probabilities
for the grm items in an object of class "irt.pars"
. If x
contains
dichotomous items or items associated with another polytomous model, a warning will be
displayed stating that probabilities will be computed for the grm items only. If x
contains parameters for multiple groups, a list of "irt.prob"
objects will be
returned. The argument dimensions
does not need to be included for this method.
This method can be used to compute probabilities
for the grm items in an object of class sep.pars
. If x
contains
dichotomous items or items associated with another polytomous model, a warning will be
displayed stating that probabilities will be computed for the grm items only. The
argument dimensions
does not need to be included for this method.
Jonathan P. Weeks weeksjp@gmail.com
Embretson, S. E., & Reise, S. P. (2000) Item Response Theory for Psychologists. Mahwah, New Jersey: Lawrence Erlbaum Associates.
Kolen, M. J. & Brennan, R. L. (2004) Test Equating, Scaling, and Linking (2nd ed.). New York: Springer.
Muraki, E., & Carlson, J. E. (1995). Full-information factor analysis for polytomous item responses. Applied Psychological Measurement, 19(1), 73-90.
Samejima, F. (1969) Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph, No. 17.
Samejima, F. (1996) The graded response model. In W. J. van der Linden & Hambleton, R. K. (Eds.) Handbook of Modern Item Response Theory (pp. 85-100). New York: Springer-Verlag.
Weeks, J. P. (2010) plink: An R package for linking mixed-format tests using IRT-based methods. Journal of Statistical Software, 35(12), 1–33. URL http://www.jstatsoft.org/v35/i12/
mixed:
compute probabilities for mixed-format items
plot:
plot item characteristic/category curves
irt.prob
, irt.pars
, sep.pars:
classes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | ###### Unidimensional Examples ######
## Cumulative probabilities
## Item parameters from Embretson & Reise (2000, p. 101) items 9-11
# Includes a location parameter
a <- c(2.09,1.18,1.69)
b <- matrix(c(-1.07,-1.03,.39,.86,1.78,1.85,-.87,-.39,.31,NA,
-1.4,-.42,NA,NA,-1.74),3,5)
pars <- cbind(a,b)
rownames(pars) <- paste("Item",9:11,sep=" ")
colnames(pars) <- c("a","b",paste("c",1:4,sep=""))
cat <- c(3,4,5)
x <- grm(pars,cat,location=TRUE)
plot(x)
## Item parameters from Kolen & Brennan (2004, p. 210)
# Use theta values from -3 to 3 with an increment of 0.5
pars <- t(c(1.2,-.5,.6,1.1,1.3))
x <- grm(pars,5,theta=seq(-3,3,.05))
plot(x,item.lab=FALSE)
## Category probabilities
## Single item
pars <- t(c(1.2,-.5,.6,1.1,1.3))
x <- grm(pars,5,seq(-3,3,.05),catprob=TRUE)
plot(x,item.lab=FALSE)
# Items without location parameter
a <- c(2.09,1.18,1.69)
b <- matrix(c(-1.93,-2.81,-1.46,-.2,-.64,.08,NA,.37,.81,NA,NA,2.13),3,4)
pars <- cbind(a,b)
rownames(pars) <- paste("Item",9:11,sep=" ")
colnames(pars) <- c("a",paste("b",1:4,sep=""))
cat <- c(3,4,5)
x <- grm(pars,cat,catprob=TRUE)
plot(x)
## Create sep.pars object then compute category probabilities
a <- c(2.09,1.18,1.69)
b <- matrix(c(-1.93,-2.81,-1.46,-.2,-.64,.08,NA,.37,.81,NA,NA,2.13),3,4)
pars <- cbind(a,b)
cat <- c(3,4,5)
pm <- as.poly.mod(3,"grm")
out <- sep.pars(pars,cat,pm)
x <- grm(out,catprob=TRUE)
plot(x)
###### Multidimensional Examples ######
## Cumulative probabilities
a <- matrix(c(.873, .226, .516, .380, .613, .286 ),3,2,byrow=TRUE)
d <- matrix(c(2.255, 1.334, -.503, -2.051, -3.082,
1.917, 1.074, -.497, -1.521, -2.589,
1.624, .994, -.656, -1.978, NA),3,5,byrow=TRUE)
pars <- cbind(a,d)
cat <- c(6,6,5)
x <- grm(pars,cat,dimensions=2)
plot(x)
# Plot separated response surfaces
plot(x, separate=TRUE, drape=TRUE)
## Category Probabilities
## Use {pars} an {cat} from the example above
x <- grm(pars,cat,dimensions=2, catprob=TRUE)
# plot combined item category surfaces
# The screen argument adjusts the orientation of the axes
plot(x,screen=list(z=-40,x=-60), auto.key=list(space="right"))
|
Loading required package: lattice
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.