Nothing
## Compute the individual and/or time effects for panel model. plm
## methods for the fixef and ranef generics of the nlme
## package. print, summary and print.summary methods are provided for
## fixef objects.
## The within_intercept.plm function computes the overall intercept of
## within fitted models.
#' @title
#' Extract the Fixed Effects
#'
#' @description
#' Function to extract the fixed effects from a `plm` object and
#' associated summary method.
#'
#' @details
#' Function `fixef` calculates the fixed effects and returns an object
#' of class `c("fixef", "numeric")`. By setting the `type` argument,
#' the fixed effects may be returned in levels (`"level"`), as
#' deviations from the first value of the index (`"dfirst"`), or as
#' deviations from the overall mean (`"dmean"`). If the argument
#' `vcov` was specified, the standard errors (stored as attribute "se"
#' in the return value) are the respective robust standard errors.
#' For two-way fixed-effect models, argument `effect` controls which
#' of the fixed effects are to be extracted: `"individual"`, `"time"`, or
#' the sum of individual and time effects (`"twoways"`).
#' NB: See **Examples** for how the sum of effects can be split in an individual
#' and a time component.
#' For one-way models, the effects of the model are extracted and the
#' argument `effect` is disrespected.
#'
#' The associated `summary` method returns an extended object of class
#' `c("summary.fixef", "matrix")` with more information (see sections
#' **Value** and **Examples**).
#'
#' References with formulae (except for the two-ways unbalanced case)
#' are, e.g., \insertCite{GREE:12;textual}{plm}, Ch. 11.4.4, p. 364,
#' formulae (11-25); \insertCite{WOOL:10;textual}{plm}, Ch. 10.5.3,
#' pp. 308-309, formula (10.58).
#' @name fixef.plm
#' @aliases fixef
#' @param x,object an object of class `"plm"`, an object of class
#' `"fixef"` for the `print` and the `summary` method,
#' @param effect one of `"individual"`, `"time"`, or `"twoways"`, only relevant in
#' case of two--ways effects models (where it defaults to `"individual"`),
#' @param vcov a variance--covariance matrix furnished by the user or
#' a function to calculate one (see **Examples**),
#' @param type one of `"level"`, `"dfirst"`, or `"dmean"`,
#' @param digits digits,
#' @param width the maximum length of the lines in the print output,
#' @param \dots further arguments.
#' @return For function `fixef`, an object of class `c("fixef", "numeric")`
#' is returned: It is a numeric vector containing
#' the fixed effects with attribute `se` which contains the
#' standard errors. There are two further attributes: attribute
#' `type` contains the chosen type (the value of argument `type`
#' as a character); attribute `df.residual` holds the residual
#' degrees of freedom (integer) from the fixed effects model (plm
#' object) on which `fixef` was run. For the two-way unbalanced case, only
#' attribute `type` is added.
#'
#' For function `summary.fixef`, an object of class
#' `c("summary.fixef", "matrix")` is returned: It is a matrix with four
#' columns in this order: the estimated fixed effects, their standard
#' errors and associated t--values and p--values.
#' For the two-ways unbalanced case, the matrix contains only the estimates.
#' The type of the fixed effects and the standard errors in the
#' summary.fixef object correspond to was requested in the `fixef`
#' function by arguments `type` and `vcov`, respectively.
#'
#' @author Yves Croissant
#' @seealso [within_intercept()] for the overall intercept of fixed
#' effect models along its standard error, [plm()] for plm objects
#' and within models (= fixed effects models) in general. See
#' [ranef()] to extract the random effects from a random effects
#' model.
#' @references \insertAllCited{}
#' @keywords regression
#' @examples
#'
#' data("Grunfeld", package = "plm")
#' gi <- plm(inv ~ value + capital, data = Grunfeld, model = "within")
#' fixef(gi)
#' summary(fixef(gi))
#' summary(fixef(gi))[ , c("Estimate", "Pr(>|t|)")] # only estimates and p-values
#'
#' # relationship of type = "dmean" and "level" and overall intercept
#' fx_level <- fixef(gi, type = "level")
#' fx_dmean <- fixef(gi, type = "dmean")
#' overallint <- within_intercept(gi)
#' all.equal(overallint + fx_dmean, fx_level, check.attributes = FALSE) # TRUE
#'
#' # extract time effects in a twoways effects model
#' gi_tw <- plm(inv ~ value + capital, data = Grunfeld,
#' model = "within", effect = "twoways")
#' fixef(gi_tw, effect = "time")
#'
#' # with supplied variance-covariance matrix as matrix, function,
#' # and function with additional arguments
#' fx_level_robust1 <- fixef(gi, vcov = vcovHC(gi))
#' fx_level_robust2 <- fixef(gi, vcov = vcovHC)
#' fx_level_robust3 <- fixef(gi, vcov = function(x) vcovHC(x, method = "white2"))
#' summary(fx_level_robust1) # gives fixed effects, robust SEs, t- and p-values
#'
#' # calc. fitted values of oneway within model:
#' fixefs <- fixef(gi)[index(gi, which = "id")]
#' fitted_by_hand <- fixefs + gi$coefficients["value"] * gi$model$value +
#' gi$coefficients["capital"] * gi$model$capital
#'
#' # calc. fittes values of twoway unbalanced within model via effects:
#' gtw_u <- plm(inv ~ value + capital, data = Grunfeld[-200, ], effect = "twoways")
#' yhat <- as.numeric(gtw_u$model[ , 1] - gtw_u$residuals) # reference
#' pred_beta <- as.numeric(tcrossprod(coef(gtw_u), as.matrix(gtw_u$model[ , -1])))
#' pred_effs <- as.numeric(fixef(gtw_u, "twoways")) # sum of ind and time effects
#' all.equal(pred_effs + pred_beta, yhat) # TRUE
#'
#' # Splits of summed up individual and time effects:
#' # use one "level" and one "dfirst"
#' ii <- index(gtw_u)[[1L]]; it <- index(gtw_u)[[2L]]
#' eff_id_dfirst <- c(0, as.numeric(fixef(gtw_u, "individual", "dfirst")))[ii]
#' eff_ti_dfirst <- c(0, as.numeric(fixef(gtw_u, "time", "dfirst")))[it]
#' eff_id_level <- as.numeric(fixef(gtw_u, "individual"))[ii]
#' eff_ti_level <- as.numeric(fixef(gtw_u, "time"))[it]
#'
#' all.equal(pred_effs, eff_id_level + eff_ti_dfirst) # TRUE
#' all.equal(pred_effs, eff_id_dfirst + eff_ti_level) # TRUE
#'
#' @importFrom nlme fixef
#' @export fixef
NULL
#' @rdname fixef.plm
#' @importFrom stats weighted.mean
#' @export
fixef.plm <- function(object, effect = NULL,
type = c("level", "dfirst", "dmean"),
vcov = NULL, ...){
model.effect <- describe(object, "effect")
if(is.null(effect)){
# default for twoway model to individual effect
effect <- switch(model.effect,
"individual" = "individual",
"time" = "time",
"twoways" = "individual")
}
else{
if(model.effect != "twoways" && model.effect != effect) stop("wrong effect argument")
if(!effect %in% c("individual", "time", "twoways")) stop("wrong effect argument")
}
type <- match.arg(type)
if(!is.null(object$call)){
if(describe(object, "model") != "within")
stop("fixef is relevant only for within models")
}
formula <- formula(object)
data <- model.frame(object)
pdim <- pdim(object)
# the between model may contain time independent variables, the
# within model doesn't. So select the relevant elements using nw
# (names of the within variables)
nw <- names(coef(object))
# For procedure to get the individual/time effects by multiplying the within
# estimates with the between-ed data, see, e.g.:
# Wooldridge (2010), Econometric Analysis of Cross Section and Panel Data, 2nd ed.,
# Ch. 10.5.3, pp. 308-309, formula (10.58)
# Greene (2012), Econometric Analysis,
# Ch. 11.4.4, p. 364, formulae (11-25)
#
# NB: These textbook formulae do not give the correct results in the two-ways unbalanced case,
# all other cases (twoways/balanced; oneway(ind/time)/balanced/unbalanced) are correct
# for these formulae.
if(model.effect != "twoways") {
Xb <- model.matrix(data, rhs = 1, model = "between", effect = effect)
yb <- pmodel.response(data, model = "between", effect = effect)
fixef <- yb - as.vector(crossprod(t(Xb[ , nw, drop = FALSE]), coef(object)))
# use robust vcov if supplied
if (! is.null(vcov)) {
if (is.matrix(vcov)) vcov <- vcov[nw, nw]
if (is.function(vcov)) vcov <- vcov(object)[nw, nw]
} else {
vcov <- vcov(object)[nw, nw]
}
nother <- switch(effect,
"individual" = pdim$Tint$Ti,
"time" = pdim$Tint$nt)
s2 <- deviance(object) / df.residual(object)
sefixef <- if (type != "dfirst") {
sqrt(s2 / nother + apply(Xb[, nw, drop = FALSE], 1,
function(x) t(x) %*% vcov %*% x) )
} else {
Xb <- t(t(Xb[-1L, , drop = FALSE]) - Xb[1L, ])
sqrt(s2 * (1 / nother[-1L] + 1 / nother[1L]) +
apply(Xb[, nw, drop = FALSE], 1,
function(x) t(x) %*% vcov %*% x) )
}
res <- switch(type,
"level" = fixef,
"dfirst" = fixef[seq_along(fixef)[-1L]] - fixef[1L],
"dmean" = (fixef - weighted.mean(fixef, w = nother)))
res <- structure(res, se = sefixef, class = c("fixef", "numeric"),
type = type, df.residual = df.residual(object))
} else {
## case model.effect == "twoways"
## * two-way balanced/unbalanced model for all effects
## TODO: SEs are not computed in this case yet
## (can be computed for effect = "individual" and "time"; also for "twoways"?)
beta.data <- as.numeric(tcrossprod(coef(object),
model.matrix(object, model = "pooling")[ , nw, drop = FALSE]))
yhat <- object$model[ , 1L] - object$residuals
tw.fixef.lvl <- yhat - beta.data # sum of both effects in levels
idx <- switch(effect,
"individual" = 1L,
"time" = 2L,
"twoways" = NA_integer_) # needed for weighted.mean below -> leads to no weights
indexl <- unclass(index(object)) # unclass to list for speed
if(effect %in% c("individual", "time")) {
other.eff <- switch(effect,
"individual" = "time",
"time" = "individual")
other.idx <- switch(effect,
"individual" = 2L,
"time" = 1L)
Xb <- model.matrix(data, rhs = 1, model = "between", effect = other.eff)
yb <- pmodel.response(data, model = "between", effect = other.eff)
other.fixef.lvl <- yb - as.vector(crossprod(t(Xb[ , nw, drop = FALSE]), coef(object)))
## other dfirst
other.fixef.dfirst <- other.fixef.lvl - other.fixef.lvl[1L]
tw.fixef.lvl <- tw.fixef.lvl - other.fixef.dfirst[indexl[[other.idx]]]
tw.fixef.lvl <- tw.fixef.lvl[!collapse::fduplicated(indexl[[idx]], all = FALSE)]
names(tw.fixef.lvl) <- pdim[["panel.names"]][[idx]]
} else {
# effect = "twoways": everything already computed, just set names
names(tw.fixef.lvl) <- paste0(pdim[["panel.names"]][[1L]][indexl[[1L]]], "-",
pdim[["panel.names"]][[2L]][indexl[[2L]]])
}
res <- switch(type,
"level" = tw.fixef.lvl,
"dfirst" = tw.fixef.lvl[seq_along(tw.fixef.lvl)[-1L]] - tw.fixef.lvl[1L],
"dmean" = {
if(pdim$balanced || effect == "twoways") {
tw.fixef.lvl - mean(tw.fixef.lvl)
} else {
tw.fixef.lvl - weighted.mean(tw.fixef.lvl, w = pdim$Tint[[idx]])
}})
res <- structure(res, se = NULL, class = c("fixef", "numeric"),
type = type, df.residual = NULL)
}
res
}
#' @rdname fixef.plm
#' @export
print.fixef <- function(x, digits = max(3, getOption("digits") - 2),
width = getOption("width"), ...){
x.orig <- x
# prevent attributes from being printed
attr(x, "se") <- attr(x, "type") <- attr(x, "class") <- attr(x, "df.residual") <- attr(x, "index") <- NULL
print.default(x, digits, width, ...)
invisible(x.orig)
}
#' @rdname fixef.plm
#' @export
summary.fixef <- function(object, ...) {
# for 2-way unbalanced, there are currently no further attributes -> skip construction
res <- if(!is.null(attr(object, "se"))) {
se <- attr(object, "se")
df.res <- attr(object, "df.residual")
tvalue <- (object) / se
# was: res <- cbind(object, se, zvalue, (1 - pnorm(abs(zvalue))) * 2)
res <- cbind(object, se, tvalue, (2 * pt(abs(tvalue), df = df.res, lower.tail = FALSE)))
# see for distribution and degrees of freedom
# Greene (2003, 5th ed.), p. 288 (formula 13-7)
# = Greene (2012, 7th ed.), pp. 361-362 (formula 11-19)
colnames(res) <- c("Estimate", "Std. Error", "t-value", "Pr(>|t|)")
class(res) <- c("summary.fixef", "matrix")
attr(res, "type") <- attr(object, "type")
attr(res, "df.residual") <- df.res
res
} else {
matrix(object, dimnames = list(names(object), "Estimate"))
}
res
}
#' @rdname fixef.plm
#' @export
print.summary.fixef <- function(x, digits = max(3, getOption("digits") - 2),
width = getOption("width"), ...){
printCoefmat(x, digits = digits)
invisible(x)
}
#' @rdname fixef.plm
#' @export
fixef.pggls <- fixef.plm
#' Extract the Random Effects
#'
#' Function to calculate the random effects from a `plm` object
#' (random effects model).
#'
#' Function `ranef` calculates the random effects of a fitted random
#' effects model. For one-way models, the effects of the estimated
#' model are extracted (either individual or time effects). For
#' two-way models, extracting the individual effects is the default
#' (both, argument `effect = NULL` and `effect = "individual"` will
#' give individual effects). Time effects can be extracted by setting
#' `effect = "time"`.
#'
#' Not all random effect model types are supported (yet?).
#'
#' @param object an object of class `"plm"`, needs to be a fitted
#' random effects model,
#' @param effect `NULL`, `"individual"`, or `"time"`, the effects to
#' be extracted, see **Details**,
#' @param \dots further arguments (currently not used).
#' @return A named numeric with the random effects per dimension
#' (individual or time).
#' @name ranef.plm
#' @aliases ranef
#' @importFrom nlme ranef
#' @export ranef
#' @author Kevin Tappe
#' @seealso [fixef()] to extract the fixed effects from a fixed
#' effects model (within model).
#' @keywords regression
#' @examples
#'
#' data("Grunfeld", package = "plm")
#' m1 <- plm(inv ~ value + capital, data = Grunfeld, model = "random")
#' ranef(m1) # individual random effects
#'
#' # compare to random effects by ML estimation via lme from package nlme
#' library(nlme)
#' m2 <- lme(inv ~ value + capital, random = ~1|firm, data = Grunfeld)
#' cbind("plm" = ranef(m1), "lme" = unname(ranef(m2)))
#'
#' # two-ways RE model, calculate individual and time random effects
#' data("Cigar", package = "plm")
#' tw <- plm(sales ~ pop + price, data = Cigar, model = "random", effect = "twoways")
#' ranef(tw) # individual random effects
#' ranef(tw, effect = "time") # time random effects
#'
NULL
#' @rdname ranef.plm
#' @export
ranef.plm <- function(object, effect = NULL, ...) {
# TODO:
# Check if the same procedure can be applied to
# * unbalanced two-way case (for now: implemented the same way, but not entirely sure)
# * random IV models
# * nested random effect models
model <- describe(object, "model")
obj.effect <- describe(object, "effect")
balanced <- is.pbalanced(object)
if(model != "random") stop("only applicable to random effect models")
# TODO: Are random effects for nested models and IV models calculated the same way?
# Be defensive here and error for such models.
if(obj.effect == "nested") stop("nested random effect models are not supported (yet?)")
if(length(object$formula)[2L] >= 2L) stop("ranef: IV models not supported (yet?)")
if(!is.null(effect) && !(effect %in% c("individual", "time")))
stop("argument 'effect' must be NULL, \"individual\", or \"time\"")
if(obj.effect != "twoways" && !is.null(effect) && effect != obj.effect)
stop(paste0("for one-way models, argument \"effect\" must be NULL or match the effect introduced in model estimation"))
# default effect is the model's effect
# for two-ways RE models: set default to effect = "individual"
if(obj.effect == "twoways" && is.null(effect)) effect <- "individual"
if(is.null(effect)) effect <- obj.effect
erc <- ercomp(object)
# extract theta, but depending on model/effect, it is adjusted/overwritten later
theta <- unlist(erc["theta"], use.names = FALSE)
# res <- object$residuals # gives residuals of quasi-demeaned model
res <- residuals_overall_exp.plm(object) # but need RE residuals of overall model
if(!inherits(res, "pseries")) {
# just make sure we have a pseries for the following between() to work
attr(res, "index") <- index(object$model)
class(res) <- c("pseries", class(res))
}
# mean_res <- Between(res, effect = effect) # has length == # observations
mean_res <- between(res, effect = effect) # but need length == # individuals
if(obj.effect == "twoways" && balanced) {
theta <- switch(effect,
"individual" = theta[1L],
"time" = theta[2L])
}
if(obj.effect == "twoways" && !balanced) {
theta <- erc[["theta"]][[if(effect == "individual") "id" else "time"]]
}
if(!balanced) {
# in the unbalanced cases, ercomp[["theta"]] is full length (# obs)
# -> reduce to per id/time
select <- switch(effect,
"individual" = !collapse::fduplicated(index(object$model)[1L], all = FALSE),
"time" = !collapse::fduplicated(index(object$model)[2L], all = FALSE))
theta <- theta[select]
}
# calculate random effects:
# This formula works (at least) for:
# balanced one-way (is symmetric for individual/time)
# unbalanced one-way (symmetric) is also caught by this line as theta is reduced before
# balanced two-way case (symmetric)
raneffects <- (1 - (1 - theta)^2) * mean_res
names(raneffects) <- names(mean_res)
return(raneffects)
}
#' Overall Intercept for Within Models Along its Standard Error
#'
#' This function gives an overall intercept for within models and its
#' accompanying standard error or an within model with the overall intercept
#'
#' The (somewhat artificial) intercept for within models (fixed
#' effects models) was made popular by Stata of StataCorp
#' \insertCite{@see @GOUL:13}{plm}, EViews of IHS, and gretl
#' \insertCite{@see @GRETL:2021, p. 200-201, listing 23.1}{plm}, see for
#' treatment in the literature,
#' e.g., \insertCite{GREE:12;textual}{plm}, Ch. 11.4.4, p. 364. It can
#' be considered an overall intercept in the within model framework
#' and is the weighted mean of fixed effects (see **Examples** for the
#' relationship).
#'
#' `within_intercept` estimates a new model which is
#' computationally more demanding than just taking the weighted
#' mean. However, with `within_intercept` one also gets the
#' associated standard error and it is possible to get an overall
#' intercept for two-way fixed effect models.
#'
#' Users can set argument `vcov` to a function to calculate a
#' specific (robust) variance--covariance matrix and get the
#' respective (robust) standard error for the overall intercept,
#' e.g., the function [vcovHC()], see examples for
#' usage. Note: The argument `vcov` must be a function, not a
#' matrix, because the model to calculate the overall intercept for
#' the within model is different from the within model itself.
#'
#' If argument `return.model = TRUE` is set, the full model object is returned,
#' while in the default case only the intercept is returned.
#'
#' @aliases within_intercept
#' @param object object of class `plm` which must be a within
#' model (fixed effects model),
#' @param vcov if not `NULL` (default), a function to calculate a
#' user defined variance--covariance matrix (function for robust
#' vcov), only used if `return.model = FALSE`,
#' @param return.model a logical to indicate whether only the overall intercept
#' (`FALSE` is default) or a full model object (`TRUE`) is to be returned,
#' @param \dots further arguments (currently none).
#' @return Depending on argument `return.model`: If `FALSE` (default), a named
#' `numeric` of length one: The overall intercept for the estimated within model
#' along attribute "se" which contains the standard error for the intercept.
#' If `return.model = TRUE`, the full model object, a within model with the
#' overall intercept (NB: the model identifies itself as a pooling model, e.g.,
#' in summary()).
#'
#' @export
#' @author Kevin Tappe
#' @seealso [fixef()] to extract the fixed effects of a within model.
#' @references
#'
#' \insertAllCited{}
#'
#' @keywords attribute
#' @examples
#' data("Hedonic", package = "plm")
#' mod_fe <- plm(mv ~ age + crim, data = Hedonic, index = "townid")
#' overallint <- within_intercept(mod_fe)
#' attr(overallint, "se") # standard error
#'
#' # overall intercept is the weighted mean of fixed effects in the
#' # one-way case
#' weighted.mean(fixef(mod_fe), pdim(mod_fe)$Tint$Ti)
#'
#' ### relationship of type="dmean", "level" and within_intercept
#' ## one-way balanced case
#' data("Grunfeld", package = "plm")
#' gi <- plm(inv ~ value + capital, data = Grunfeld, model = "within")
#' fx_level <- fixef(gi, type = "level")
#' fx_dmean <- fixef(gi, type = "dmean")
#' overallint <- within_intercept(gi)
#' all.equal(overallint + fx_dmean, fx_level, check.attributes = FALSE) # TRUE
#' ## two-ways unbalanced case
#' gtw_u <- plm(inv ~ value + capital, data = Grunfeld[-200, ], effect = "twoways")
#' int_tw_u <- within_intercept(gtw_u)
#' fx_dmean_tw_i_u <- fixef(gtw_u, type = "dmean", effect = "individual")[index(gtw_u)[[1L]]]
#' fx_dmean_tw_t_u <- fixef(gtw_u, type = "dmean", effect = "time")[index(gtw_u)[[2L]]]
#' fx_level_tw_u <- as.numeric(fixef(gtw_u, "twoways", "level"))
#' fx_level_tw_u2 <- int_tw_u + fx_dmean_tw_i_u + fx_dmean_tw_t_u
#' all.equal(fx_level_tw_u, fx_level_tw_u2, check.attributes = FALSE) # TRUE
#'
#' ## overall intercept with robust standard error
#' within_intercept(gi, vcov = function(x) vcovHC(x, method="arellano", type="HC0"))
#'
#' ## have a model returned
#' mod_fe_int <- within_intercept(gi, return.model = TRUE)
#' summary(mod_fe_int)
#' # replicates Stata's robust standard errors exactly as model is with intercept
#' summary(mod_fe_int, vcov = function(x) vcovHC(x, type = "sss"))
#
within_intercept <- function(object, ...) {
UseMethod("within_intercept")
}
# Note: The name of the function (within_intercept) with an underscore does not
# follow the regular naming scheme where one would expect a dot (within.intercept).
# Due to the S3 class system, calling the function within.intercept would result in
# a name clash as we have a function called 'within' and in this case the S3
# system interprets '.intercept' as a class called 'intercept'.
# Note: return value of within_intercept is related to return values of fixef.plm,
# see inst/tests/test_within_intercept.R
#' @rdname within_intercept
#' @export
within_intercept.plm <- function(object, vcov = NULL, return.model = FALSE, ...) {
if(!inherits(object, "plm")) stop("input 'object' needs to be a \"within\" model estimated by plm()")
if(length(object$formula)[2L] >= 2L) stop("within_intercept: IV models not supported (yet?)")
model <- describe(object, what = "model")
effect <- describe(object, what = "effect")
if(model != "within") stop("input 'object' needs to be a \"within\" model estimated by plm(..., model = \"within\", ...)")
# vcov must be a function, because the auxiliary model estimated to get the
# overall intercept next to its standard errors is different from
# the FE model for which the intercept is estimated, e.g., dimensions
# of vcov differ for FE and for auxiliary model.
if(!is.null(vcov)) {
if(is.matrix(vcov)) stop("for within_intercept, 'vcov' may not be of class 'matrix', it must be supplied as a function, e.g., vcov = function(x) vcovHC(x)")
if(!is.function(vcov)) stop("for within_intercept, argument 'vcov' must be a function, e.g., vcov = function(x) vcovHC(x)")
}
index <- attr(object$model, which = "index")
# Transformation to get the overall intercept is:
# demean groupwise and add back grand mean of each variable, then run OLS
mf <- model.frame(object)
withinY <- pmodel.response(object) # returns the response specific to the 'effect' of the est. FE model object
meanY <- mean(mf[ , 1L]) # mean of original data's response
transY <- withinY + meanY
withinM <- model.matrix(object) # returns the model.matrix specific to the 'effect' of the est. FE model object
M <- model.matrix(mf, cstcovar.rm = "all")
M <- M[ , colnames(M) %in% colnames(withinM), drop = FALSE] # just to be sure: should be same columns
meansM <- colMeans(M)
transM <- t(t(withinM) + meansM)
# estimation by lm()
# data <- data.frame(cbind(transY, transM))
# auxreg <- lm(data)
# summary(auxreg)
# estimation by plm() - to apply robust vcov function if supplied
# NB: this changes variable names slightly (data.frame uses make.names to, e.g., get rid of parentheses in variable names)
data <- pdata.frame(data.frame(cbind(index, transY, transM)), drop.index = TRUE)
form <- as.formula(paste0(names(data)[1L], "~", paste(names(data)[-1L], collapse = "+")))
auxreg <- plm(form, data = data, model = "pooling")
# degrees of freedom correction due to FE transformation for "normal" vcov [copied over from plm.fit]
pdim <- pdim(index)
card.fixef <- switch(effect,
"individual" = pdim$nT$n,
"time" = pdim$nT$T,
"twoways" = pdim$nT$n + pdim$nT$T - 1L)
df <- df.residual(auxreg) - card.fixef + 1L # just for within_intercept: here we need '+1' to correct for the intercept
vcov_mat <- vcov(auxreg)
vcov_mat <- vcov_mat * df.residual(auxreg) / df
auxreg$vcov <- vcov_mat # plug in new vcov (adjusted "normal" vcov) in auxiliary model
res <- if(!return.model) {
#### return only intercept with SE as attribute
## in case of robust vcov, which is supplied by a function
## no adjustment to the robust vcov is necessary
if(is.function(vcov)) vcov_mat <- vcov(auxreg) # robust vcov as supplied by a function
intercept <- auxreg[["coefficients"]]["(Intercept)"]
attr(intercept, which = "se") <- sqrt(vcov_mat[1L, 1L])
names(intercept) <- "(overall_intercept)"
intercept
} else {
### return model
if(!is.null(vcov)) warning("argument 'vcov' is non-NULL and is ignored as 'return.model = TRUE' is set")
auxreg
}
return(res)
} # END within_intercept.plm
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.