Nothing
test_that("mise_vmf() does the job on computing exactly the MISE", {
# Parameters
M <- 1e4
n <- 3
d <- rpois(1, lambda = 1) + 1
m <- 2
kappa <- rep(5, m)
mu <- r_unif_polysph(n = m, d = d)
prop <- rep(0.5, m)
h <- 1
# Sample X's and evaluate density
set.seed(42)
N1 <- 1e3
X <- r_mvmf_polysph(n = N1, d = d, mu = mu, kappa = kappa, prop = prop)
f_X <- drop(d_mvmf_polysph(x = X, d = d, mu = mu, kappa = kappa, prop = prop))
# Sample Y's to evaluate the kde
N2 <- 1e3
Y <- lapply(seq_len(N2), function(nj) {
r_mvmf_polysph(n = n, d = d, mu = mu, kappa = kappa, prop = prop)
})
# Simulate sample and compute kde
kde_f_2 <- sapply(seq_len(N2), function(k) {
kde <- tryCatch(kde_polysph(x = X, X = Y[[k]][1:n, ], d = d, h = h),
error = function(e) NA)
(kde - f_X)^2
})
kde_f_2 <- rowMeans(kde_f_2, na.rm = TRUE)
# Exact vs. Monte Carlo
expect_equal(drop(mise_vmf(h = h, n = n, mu = mu, kappa = kappa,
prop = prop, d = d, seed_psi = 42,
spline = TRUE)$mise),
mean(kde_f_2 / f_X),
tolerance = 1e-2)
})
test_that("mise_vmf() is properly vectorized in h and n", {
h <- c(0.1, 0.2)
n <- c(10, 20)
mu <- rbind(c(0, 1), c(1, 0))
kappa <- c(5, 2)
prop <- c(0.7, 0.3)
expect_equal(mise_vmf(h = h, n = n, mu = mu, kappa = kappa,
prop = prop, d = 1, seed_psi = 1, M_psi = 10,
spline = TRUE)$mise,
c(mise_vmf(h = h[1], n = n[1], mu = mu, kappa = kappa,
prop = prop, d = 1, seed_psi = 1, M_psi = 10,
spline = TRUE)$mise,
mise_vmf(h = h[2], n = n[2], mu = mu, kappa = kappa,
prop = prop, d = 1, seed_psi = 1, M_psi = 10,
spline = TRUE)$mise))
expect_equal(mise_vmf(h = h, n = n[1], mu = mu, kappa = kappa,
prop = prop, d = 1, seed_psi = 1, M_psi = 10,
spline = TRUE)$mise,
c(mise_vmf(h = h[1], n = n[1], mu = mu, kappa = kappa,
prop = prop, d = 1, seed_psi = 1, M_psi = 10,
spline = TRUE)$mise,
mise_vmf(h = h[2], n = n[1], mu = mu, kappa = kappa,
prop = prop, d = 1, seed_psi = 1, M_psi = 10,
spline = TRUE)$mise))
})
test_that("mise_vmf_polysph() and mise_vmf() equal on the sphere", {
h <- 0.5
expect_equal(mise_vmf(h = h, n = 100, mu = rbind(c(0, 1), c(1, 0)),
kappa = c(5, 2), prop = c(0.7, 0.3), d = 1,
seed_psi = 1, spline = TRUE),
mise_vmf_polysph(h = h, n = 100,
mu = rbind(c(0, 1), c(1, 0)),
kappa = c(5, 2), prop = c(0.7, 0.3),
d = 1, seed_psi = 1, spline = TRUE))
})
test_that("bw_mise_polysph() minimizes the MISE on the sphere", {
# Parameters
r <- 1
m <- rpois(1, 3) + 1
d <- rpois(r, 3) + 1
mu <- r_unif_polysph(n = m, d = d)
kappa <- matrix(abs(rnorm(m * r, sd = 2)), nrow = m, ncol = r)
prop <- runif(m)
prop <- prop / sum(prop)
n <- 5
# Minimization of ISE
bw0 <- cbind(10^seq(log10(0.2), log10(5), l = 10))
log1p_mise_bw0 <- sapply(bw0, function(h) {
log1p_mise(log_h = log(h), n = n, mu = mu, kappa = kappa, prop = prop,
d = d, seed_psi = 1, spline = TRUE)
})
bw_mise <- bw_mise_polysph(n = n, d = d, bw0 = bw0, mu = mu, kappa = kappa,
prop = prop, seed_psi = 1, spline = TRUE)
plot(bw0, log1p_mise_bw0, type = "o", xlab = "h", ylab = "log1p_mise",
xlim = range(c(bw0, bw_mise$bw)))
points(bw_mise$bw, bw_mise$opt$minimum, col = "red", pch = 19)
expect_lte(bw_mise$opt$minimum, min(log1p_mise_bw0))
})
test_that("ise_vmf_polysph() does the job on computing exactly the ISE", {
# Parameters and sample
n <- 3
d <- rpois(1, lambda = 1) + 1
m <- 2
kappa <- rep(5, m)
mu <- r_unif_polysph(n = m, d = d)
prop <- rep(0.5, m)
h <- seq(0.1, 1, l = 10)
X <- r_mvmf_polysph(n = n, d = d, mu = mu, kappa = kappa, prop = prop)
# Exact vs. Monte Carlo
expect_equal(
ise_vmf_polysph(X = X, d = d, h = h, mu = mu, kappa = kappa,
prop = prop, spline = TRUE, exact = TRUE)$ise,
ise_vmf_polysph(X = X, d = d, h = h, mu = mu, kappa = kappa,
prop = prop, seed_psi = 42, M_psi = 1e4,
spline = TRUE, exact = FALSE)$ise,
tolerance = 5e-2
)
})
test_that("bw_ise_polysph() minimizes the ISE on the sphere", {
# Parameters and sample
r <- 1
m <- rpois(1, 3) + 1
d <- rpois(r, 3) + 1
mu <- r_unif_polysph(n = m, d = d)
kappa <- matrix(abs(rnorm(m * r, sd = 2)), nrow = m, ncol = r)
prop <- runif(m)
prop <- prop / sum(prop)
n <- 5
X <- r_mvmf_polysph(n = n, d = d, mu = mu, kappa = kappa, prop = prop)
# Minimization of ISE
bw0 <- cbind(10^seq(log10(0.2), log10(5), l = 20))
log1p_ise_bw0 <- sapply(bw0, function(h) {
log1p_ise(log_h = log(h), X = X, mu = mu, kappa = kappa, prop = prop,
d = d, spline = TRUE, exact = TRUE)
})
bw_ise <- bw_ise_polysph(X = X, d = d, bw0 = bw0, mu = mu, kappa = kappa,
prop = prop, seed_psi = 1, spline = TRUE,
exact = TRUE)
plot(bw0, log1p_ise_bw0, type = "o", xlab = "h", ylab = "log1p_mise",
xlim = range(c(bw0, bw_ise$bw)))
points(bw_ise$bw, bw_ise$opt$minimum, col = "red", pch = 19)
expect_lte(bw_ise$opt$minimum, min(log1p_ise_bw0))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.