Nothing
change.origin <- function(p, o) {
if (!is.polynomial(p))
stop(paste("\"", deparse(substitute(p)), "\"", " is not a polynomial"))
o <- unclass(o[1])
r <- predict(p, o)
m <- 1
p <- deriv(p)
while (p != 0) {
r <- c(r, predict(p, o))
m <- m + 1
p <- polynomial(unclass(deriv(p))/m)
}
polynomial(r)
}
coef.polynomial <- function(object, ...) {
as.vector(object)
}
deriv.polynomial <- function(expr, ...) {
expr <- unclass(expr)
if (length(expr) == 1)
return(polynomial(0))
expr <- expr[-1]
polynomial(expr * seq(along = expr))
}
integral <- function(expr, ...) {
UseMethod("integral")
}
integral.polynomial <- function(expr, limits = NULL, ...) {
expr <- unclass(expr)
p <- polynomial(c(0, expr/seq(along = expr)))
if (is.null(limits))
p else diff(predict(p, limits))
}
lines.polynomial <- function(x, len = 1000, xlim = NULL, ylim = NULL, ...) {
p <- x # generic/method
if (is.null(xlim))
xlim <- par("usr")[1:2]
if (is.null(ylim))
ylim <- par("usr")[3:4]
x <- seq(xlim[1], xlim[2], len = len)
y <- predict(p, x)
y[y <= ylim[1] | y >= ylim[2]] <- NA
lines(x, y, ...)
}
monic <- function(p) {
p <- unclass(p)
if (all(p == 0)) {
warning("the zero polynomial has no monic form")
return(polynomial(0))
}
polynomial(p/p[length(p)])
}
plot.polynomial <- function(x, xlim = 0:1, ylim = range(Px), type = "l", len = 1000,
..., xlab = "x", ylab = "P(x)") {
p <- x # generic/method
if (missing(xlim))
xlim <- range(c(0, Re(unlist(summary(p)))))
if (any(is.na(xlim))) {
warning("summary of polynomial fails. Using nominal xlim")
xlim <- 0:1
}
if (diff(xlim) == 0)
xlim <- xlim + c(-1, 1)/2
if (length(xlim) > 2)
x <- xlim else {
eps <- diff(xlim)/100
xlim <- xlim + c(-eps, eps)
x <- seq(xlim[1], xlim[2], len = len)
}
Px <- predict(p, x)
if (!missing(ylim))
Px[Px < ylim[1]] <- Px[Px > ylim[2]] <- NA
plot(x, Px, type = type, xlim = xlim, ylim = ylim,
..., xlab = xlab, ylab = ylab)
grid(lty = "dashed")
lines(x, Px, type = type, ...)
}
points.polynomial <- function(x, length = 100, ...) {
p <- x # generic/method
pu <- par("usr")
x <- seq(pu[1], pu[2], len = length)
y <- predict(p, x)
out <- y <= pu[3] | y >= pu[4]
y[out] <- NA
points(x, y, ...)
}
poly.calc <- function(x, y, tol = sqrt(.Machine$double.eps), lab = dimnames(y)[[2]]) {
if (missing(y)) {
p <- 1
for (xi in x) {
p <- c(0, p) - c(xi * p, 0)
}
return(polynomial(p))
}
if (is.matrix(y)) {
if (length(x) != nrow(y))
stop("x and y are inconsistent in size")
lis <- list()
if (is.null(lab))
lab <- paste("p", 1:(dim(y)[2]), sep = "")
for (i in 1:dim(y)[2]) lis[[lab[i]]] <- Recall(x, y[, i], tol)
return(structure(lis, class = "polylist"))
}
if (any(toss <- duplicated(x))) {
crit <- max(tapply(y, x, function(x) diff(range(x))))
if (crit > tol)
warning("some duplicated x-points have inconsistent y-values")
keep <- !toss
y <- y[keep]
x <- x[keep]
}
if ((m <- length(x)) != length(y))
stop("x and y(x) do not match in length!")
if (m <= 1)
return(polynomial(y))
r <- 0
for (i in 1:m) r <- r + (y[i] * unclass(Recall(x[-i])))/prod(x[i] - x[-i])
r[abs(r) < tol] <- 0
polynomial(r)
}
poly.from.zeros <- function(...) {
poly.calc(unlist(list(...)))
}
poly.from.roots <- poly.from.zeros
poly.from.values <- poly.calc
predict.polynomial <- function(object, newdata, ...) {
p <- object # generic/method
v <- 0
p <- rev(unclass(p))
for (pj in p) v <- newdata * v + pj
v
}
print.summary.polynomial <- function(x, ...) {
cat("\n Summary information for:\n")
print(attr(x, "originalPolynomial"))
cat("\n Zeros:\n")
print(x$zeros)
cat("\n Stationary points:\n")
print(x$stationaryPoints)
cat("\n Points of inflexion:\n")
print(x$inflexionPoints)
invisible(x)
}
solve.polynomial <- function(a, b, ...) {
if (!missing(b))
a <- a - b
a <- unclass(a)
if (a[1] == 0) {
z <- rle(a)$lengths[1]
a <- a[-(1:z)]
r <- rep(0, z)
} else {
r <- numeric(0)
}
switch(as.character(length(a)),
`0` = , `1` = r,
`2` = sort(c(r, -a[1]/a[2])),
{
a <- rev(unclass(a))
a <- (a/a[1])[-1]
M <- rbind(-a, cbind(diag(length(a) - 1), 0))
sort(c(r, eigen(M, symmetric = FALSE, only.values = TRUE)$values))
})
}
summary.polynomial <- function(object, ...) {
dp <- deriv(object)
structure(list(zeros = solve(object),
stationaryPoints = solve(dp),
inflexionPoints = solve(deriv(dp))),
class = "summary.polynomial",
originalPolynomial = object)
}
.is_zero_polynomial <- function(x) {
identical(x, as.polynomial(0))
}
.degree <- function(x) {
length(unclass(x)) - 1
}
.GCD2 <- function(x, y) {
if (.is_zero_polynomial(y)) {
x
} else {
if (.degree(y) == 0) {
as.polynomial(1)
} else {
Recall(y, x%%y)
}
}
}
.LCM2 <- function(x, y) {
if (.is_zero_polynomial(x) || .is_zero_polynomial(y)) {
return(as.polynomial(0))
}
(x/.GCD2(x, y)) * y
}
GCD <- function(...) {
UseMethod("GCD")
}
GCD.polynomial <- function(...) {
args <- c.polylist(...)
if (length(args) < 2)
stop("Need at least two polynomials.")
accumulate(.GCD2, args[[1]], args[-1], FALSE)
}
GCD.polylist <- GCD.polynomial
LCM <- function(...) {
UseMethod("LCM")
}
LCM.polynomial <- function(...) {
args <- c.polylist(...)
if (length(args) < 2)
stop("Need at least two polynomials.")
accumulate(.LCM2, args[[1]], args[-1], FALSE)
}
LCM.polylist <- LCM.polynomial
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.