Description Usage Arguments Details Value Examples
Determines the polynomial coefficients of some common n
-th order
polynomials.
1 2 3 4 5 6 7 8 9 10 11 12 13 | Abel(n, a = 1)
Bessel(n)
rBessel(n)
Chebyshev1(n)
Chebyshev2(n)
ChebyshevT(n)
ChebyshevU(n)
Cyclotomic(n)
Hermite(n)
|
n |
a non-negative integer; the order of the polynomial. For |
a |
a real or complex number; most commonly a positive integer. |
The n
-th order Abel polynomial is defined as
p[n](x) = x (x - a n)^{n - 1}
The n
-th order Bessel polynomial (y[n]) and reverse Bessel
polynomial (θ[n]) are defined as
y[n](x) = ∑ (n + k)!/((n - k)! k!) (x/2)^k for k = 0, …, n
θ[n](x) = x^n y[n](1/x) = ∑ (n + k)!/((n - k)! k!) x^(n - k)/2^k for k = 0, …, n
The n
-th order Chebyshev polynomials of the first kind (T[n])
and the second kind (U[n]) are defined as
T[n](cos(θ)) = cos(n θ)
U[n](cos(θ)) sin(θ) = sin((n + 1) θ)
where upon defining x = cos(θ) and using trig identities to replace
cos(n θ) and sin((n + 1) θ), we find two polynomials in
terms of x
.
The n
-th order Cyclotomic polynomial is defined as
Φ[n](x) = ∏ (x - e^(2 i π k/n)) for k = 1, …, n and k is coprime with n
The n
-th order Hermite polynomial is defined as
He(x) = (-1)^n e^(x^2/2) d^n/dx^n e^(-x^2/2)
For Cyclotomic
, a numeric vector of length sum(coprime(1:n,
n)) + 1
; the coefficients of the n
-th order Cyclotomic polynomial.
For all others, a numeric vector of length n + 1
; the coefficients of the
n
-th order polynomial.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 | colours <- grDevices::palette.colors()[c("vermillion", "bluishgreen",
"blue", "skyblue", "reddishpurple", "orange")]
## Abel polynomials
n <- 0:4
plot(
xlim = c(-3, 6), ylim = c(-20, 30),
panel.first = graphics::grid(col = "gray69"),
x = NA_real_, y = NA_real_,
xlab = "x", ylab = as.call(list(call("[", as.symbol("p"),
as.symbol("n")), as.symbol("x"))),
main = "Abel Polynomials"
)
for (i in seq_along(n)) {
graphics::lines(as.polynomial(Abel(n[[i]])),
col = colours[[i]], n = 1001, lwd = 2,
xlim = graphics::par("usr")[1:2])
}
graphics::box()
graphics::legend(
x = "bottomright",
legend = as.expression(lapply(X = n, FUN = function(n1) {
call("==", as.symbol("n"), n1)
})),
col = colours[seq_along(n)],
lwd = 2,
bty = "n"
)
graphics::title(sub = ~"All with" ~ list(a == 1), adj = 1)
## Bessel polynomials
n <- 0:5
plot(
xlim = c(-3, 6), ylim = c(-10, 20),
panel.first = graphics::grid(col = "gray69"),
x = NA_real_, y = NA_real_,
xlab = "x", ylab = as.call(list(call("[", as.symbol("y"),
as.symbol("n")), as.symbol("x"))),
main = "Bessel Polynomials"
)
for (i in seq_along(n)) {
graphics::lines(as.polynomial(Bessel(n[[i]])),
col = colours[[i]], n = 1001, lwd = 2,
xlim = graphics::par("usr")[1:2])
}
graphics::box()
graphics::legend(
x = "bottomright",
legend = as.expression(lapply(X = n, FUN = function(n1) {
call("==", as.symbol("n"), n1)
})),
col = colours[seq_along(n)],
lwd = 2,
bty = "n"
)
## Reverse Bessel polynomials
n <- 0:5
plot(
xlim = c(-10, 10), ylim = c(-10, 20),
panel.first = graphics::grid(col = "gray69"),
x = NA_real_, y = NA_real_,
xlab = "x", ylab = as.call(list(call("[", as.symbol("theta"),
as.symbol("n")), as.symbol("x"))),
main = "Reverse Bessel Polynomials"
)
for (i in seq_along(n)) {
graphics::lines(as.polynomial(rBessel(n[[i]])),
col = colours[[i]], n = 1001, lwd = 2,
xlim = graphics::par("usr")[1:2])
}
graphics::box()
graphics::legend(
x = "bottomright",
legend = as.expression(lapply(X = n, FUN = function(n1) {
call("==", as.symbol("n"), n1)
})),
col = colours[seq_along(n)],
lwd = 2,
bty = "n"
)
## Chebyshev polynomials of the first kind
n <- 0:4
plot(
xlim = c(-1, 1), ylim = c(-1, 1),
panel.first = graphics::grid(col = "gray69"),
x = NA_real_, y = NA_real_,
xlab = "x", ylab = as.call(list(call("[", as.symbol("T"),
as.symbol("n")), as.symbol("x"))),
main = "Chebyshev polynomials of the first kind"
)
for (i in seq_along(n)) {
graphics::lines(as.polynomial(Chebyshev1(n[[i]])),
col = colours[[i]], n = 1001, lwd = 2,
xlim = graphics::par("usr")[1:2]
)
}
graphics::box()
graphics::legend(
x = "bottomright",
legend = as.expression(lapply(X = n, FUN = function(n1) {
call("==", as.symbol("n"), n1)
})),
col = colours[seq_along(n)],
lwd = 2,
bty = "n"
)
## Chebyshev polynomials of the second kind
n <- 0:4
plot(
xlim = c(-1, 1), ylim = c(-4, 5),
panel.first = graphics::grid(col = "gray69"),
x = NA_real_, y = NA_real_,
xlab = "x", ylab = as.call(list(call("[", as.symbol("U"),
as.symbol("n")), as.symbol("x"))),
main = "Chebyshev polynomials of the second kind"
)
for (i in seq_along(n)) {
graphics::lines(as.polynomial(Chebyshev2(n[[i]])),
col = colours[[i]], n = 1001, lwd = 2,
xlim = graphics::par("usr")[1:2]
)
}
graphics::box()
graphics::legend(
x = "bottomright",
legend = as.expression(lapply(X = n, FUN = function(n1) {
call("==", as.symbol("n"), n1)
})),
col = colours[seq_along(n)],
lwd = 2,
bty = "n"
)
## Cyclotomic polynomials
n <- 1:5
plot(
xlim = c(-3, 3), ylim = c(-10, 10),
panel.first = graphics::grid(col = "gray69"),
x = NA_real_, y = NA_real_,
xlab = "x", ylab = as.call(list(call("[", as.symbol("Phi"),
as.symbol("n")), as.symbol("x"))),
main = "Cyclotomic Polynomials"
)
for (i in seq_along(n)) {
graphics::lines(as.polynomial(Cyclotomic(n[[i]])),
col = colours[[i]], n = 1001, lwd = 2,
xlim = graphics::par("usr")[1:2]
)
}
graphics::box()
graphics::legend(
x = "bottomright",
legend = as.expression(lapply(X = n, FUN = function(n1) {
call("==", as.symbol("n"), n1)
})),
col = colours[seq_along(n)],
lwd = 2,
bty = "n"
)
## Hermite polynomials
n <- 0:5
plot(
xlim = c(-3, 6), ylim = c(-10, 20),
panel.first = graphics::grid(col = "gray69"),
x = NA_real_, y = NA_real_,
xlab = "x", ylab = as.call(list(call("[", as.symbol("H"),
as.symbol("n")), as.symbol("x"))),
main = "Hermite Polynomials"
)
for (i in seq_along(n)) {
graphics::lines(as.polynomial(Hermite(n[[i]])),
col = colours[[i]], n = 1001, lwd = 2,
xlim = graphics::par("usr")[1:2]
)
}
graphics::box()
graphics::legend(
x = "bottomright",
legend = as.expression(lapply(X = n, FUN = function(n1) {
call("==", as.symbol("n"), n1)
})),
col = colours[seq_along(n)],
lwd = 2,
bty = "n"
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.