CommonPolynomials: Common Polynomials

Description Usage Arguments Details Value Examples

Description

Determines the polynomial coefficients of some common n-th order polynomials.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

Arguments

n

a non-negative integer; the order of the polynomial. For Cyclotomic, n must be positive.

a

a real or complex number; most commonly a positive integer.

Details

The n-th order Abel polynomial is defined as

p[n](x) = x (x - a n)^{n - 1}

The n-th order Bessel polynomial (y[n]) and reverse Bessel polynomial (θ[n]) are defined as

y[n](x) = ∑ (n + k)!/((n - k)! k!) (x/2)^k for k = 0, …, n

θ[n](x) = x^n y[n](1/x) = ∑ (n + k)!/((n - k)! k!) x^(n - k)/2^k for k = 0, …, n

The n-th order Chebyshev polynomials of the first kind (T[n]) and the second kind (U[n]) are defined as

T[n](cos(θ)) = cos(n θ)

U[n](cos(θ)) sin(θ) = sin((n + 1) θ)

where upon defining x = cos(θ) and using trig identities to replace cos(n θ) and sin((n + 1) θ), we find two polynomials in terms of x.

The n-th order Cyclotomic polynomial is defined as

Φ[n](x) = ∏ (x - e^(2 i π k/n)) for k = 1, …, n and k is coprime with n

The n-th order Hermite polynomial is defined as

He(x) = (-1)^n e^(x^2/2) d^n/dx^n e^(-x^2/2)

Value

For Cyclotomic, a numeric vector of length sum(coprime(1:n, n)) + 1; the coefficients of the n-th order Cyclotomic polynomial.

For all others, a numeric vector of length n + 1; the coefficients of the n-th order polynomial.

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
colours <- grDevices::palette.colors()[c("vermillion", "bluishgreen",
    "blue", "skyblue", "reddishpurple", "orange")]


## Abel polynomials
n <- 0:4
plot(
    xlim = c(-3, 6), ylim = c(-20, 30),
    panel.first = graphics::grid(col = "gray69"),
    x = NA_real_, y = NA_real_,
    xlab = "x", ylab = as.call(list(call("[", as.symbol("p"),
        as.symbol("n")), as.symbol("x"))),
    main = "Abel Polynomials"
)
for (i in seq_along(n)) {
    graphics::lines(as.polynomial(Abel(n[[i]])),
        col = colours[[i]], n = 1001, lwd = 2,
        xlim = graphics::par("usr")[1:2])
}
graphics::box()
graphics::legend(
    x        = "bottomright",
    legend   = as.expression(lapply(X = n, FUN = function(n1) {
        call("==", as.symbol("n"), n1)
    })),
    col      = colours[seq_along(n)],
    lwd      = 2,
    bty      = "n"
)
graphics::title(sub = ~"All with" ~ list(a == 1), adj = 1)


## Bessel polynomials
n <- 0:5
plot(
    xlim = c(-3, 6), ylim = c(-10, 20),
    panel.first = graphics::grid(col = "gray69"),
    x = NA_real_, y = NA_real_,
    xlab = "x", ylab = as.call(list(call("[", as.symbol("y"),
        as.symbol("n")), as.symbol("x"))),
    main = "Bessel Polynomials"
)
for (i in seq_along(n)) {
    graphics::lines(as.polynomial(Bessel(n[[i]])),
        col = colours[[i]], n = 1001, lwd = 2,
        xlim = graphics::par("usr")[1:2])
}
graphics::box()
graphics::legend(
    x        = "bottomright",
    legend   = as.expression(lapply(X = n, FUN = function(n1) {
        call("==", as.symbol("n"), n1)
    })),
    col      = colours[seq_along(n)],
    lwd      = 2,
    bty      = "n"
)


## Reverse Bessel polynomials
n <- 0:5
plot(
    xlim = c(-10, 10), ylim = c(-10, 20),
    panel.first = graphics::grid(col = "gray69"),
    x = NA_real_, y = NA_real_,
    xlab = "x", ylab = as.call(list(call("[", as.symbol("theta"),
        as.symbol("n")), as.symbol("x"))),
    main = "Reverse Bessel Polynomials"
)
for (i in seq_along(n)) {
    graphics::lines(as.polynomial(rBessel(n[[i]])),
        col = colours[[i]], n = 1001, lwd = 2,
        xlim = graphics::par("usr")[1:2])
}
graphics::box()
graphics::legend(
    x        = "bottomright",
    legend   = as.expression(lapply(X = n, FUN = function(n1) {
        call("==", as.symbol("n"), n1)
    })),
    col      = colours[seq_along(n)],
    lwd      = 2,
    bty      = "n"
)


## Chebyshev polynomials of the first kind
n <- 0:4
plot(
    xlim = c(-1, 1), ylim = c(-1, 1),
    panel.first = graphics::grid(col = "gray69"),
    x = NA_real_, y = NA_real_,
    xlab = "x", ylab = as.call(list(call("[", as.symbol("T"),
        as.symbol("n")), as.symbol("x"))),
    main = "Chebyshev polynomials of the first kind"
)
for (i in seq_along(n)) {
    graphics::lines(as.polynomial(Chebyshev1(n[[i]])),
        col = colours[[i]], n = 1001, lwd = 2,
        xlim = graphics::par("usr")[1:2]
    )
}
graphics::box()
graphics::legend(
    x        = "bottomright",
    legend   = as.expression(lapply(X = n, FUN = function(n1) {
        call("==", as.symbol("n"), n1)
    })),
    col      = colours[seq_along(n)],
    lwd      = 2,
    bty      = "n"
)


## Chebyshev polynomials of the second kind
n <- 0:4
plot(
    xlim = c(-1, 1), ylim = c(-4, 5),
    panel.first = graphics::grid(col = "gray69"),
    x = NA_real_, y = NA_real_,
    xlab = "x", ylab = as.call(list(call("[", as.symbol("U"),
        as.symbol("n")), as.symbol("x"))),
    main = "Chebyshev polynomials of the second kind"
)
for (i in seq_along(n)) {
    graphics::lines(as.polynomial(Chebyshev2(n[[i]])),
        col = colours[[i]], n = 1001, lwd = 2,
        xlim = graphics::par("usr")[1:2]
    )
}
graphics::box()
graphics::legend(
    x        = "bottomright",
    legend   = as.expression(lapply(X = n, FUN = function(n1) {
        call("==", as.symbol("n"), n1)
    })),
    col      = colours[seq_along(n)],
    lwd      = 2,
    bty      = "n"
)


## Cyclotomic polynomials
n <- 1:5
plot(
    xlim = c(-3, 3), ylim = c(-10, 10),
    panel.first = graphics::grid(col = "gray69"),
    x = NA_real_, y = NA_real_,
    xlab = "x", ylab = as.call(list(call("[", as.symbol("Phi"),
        as.symbol("n")), as.symbol("x"))),
    main = "Cyclotomic Polynomials"
)
for (i in seq_along(n)) {
    graphics::lines(as.polynomial(Cyclotomic(n[[i]])),
        col = colours[[i]], n = 1001, lwd = 2,
        xlim = graphics::par("usr")[1:2]
    )
}
graphics::box()
graphics::legend(
    x        = "bottomright",
    legend   = as.expression(lapply(X = n, FUN = function(n1) {
        call("==", as.symbol("n"), n1)
    })),
    col      = colours[seq_along(n)],
    lwd      = 2,
    bty      = "n"
)


## Hermite polynomials
n <- 0:5
plot(
    xlim = c(-3, 6), ylim = c(-10, 20),
    panel.first = graphics::grid(col = "gray69"),
    x = NA_real_, y = NA_real_,
    xlab = "x", ylab = as.call(list(call("[", as.symbol("H"),
        as.symbol("n")), as.symbol("x"))),
    main = "Hermite Polynomials"
)
for (i in seq_along(n)) {
    graphics::lines(as.polynomial(Hermite(n[[i]])),
        col = colours[[i]], n = 1001, lwd = 2,
        xlim = graphics::par("usr")[1:2]
    )
}
graphics::box()
graphics::legend(
    x        = "bottomright",
    legend   = as.expression(lapply(X = n, FUN = function(n1) {
        call("==", as.symbol("n"), n1)
    })),
    col      = colours[seq_along(n)],
    lwd      = 2,
    bty      = "n"
)

polynomial documentation built on Feb. 22, 2021, 5:08 p.m.